Answer:
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
Step-by-step explanation:
d²y/dx² = (-2y² − x²) / (4y³)
Take the derivative (use quotient rule and chain rule):
d³y/dx³ = [ (4y³) (-4y dy/dx − 2x) − (-2y² − x²) (12y² dy/dx) ] / (4y³)²
d³y/dx³ = [ (-16y⁴ dy/dx − 8xy³ − (-24y⁴ dy/dx − 12x²y² dy/dx) ] / (16y⁶)
d³y/dx³ = (-16y⁴ dy/dx − 8xy³ + 24y⁴ dy/dx + 12x²y² dy/dx) / (16y⁶)
d³y/dx³ = ((8y⁴ + 12x²y²) dy/dx − 8xy³) / (16y⁶)
d³y/dx³ = ((2y² + 3x²) dy/dx − 2xy) / (4y⁴)
Substitute:
d³y/dx³ = ((2y² + 3x²) (-x / (2y)) − 2xy) / (4y⁴)
d³y/dx³ = ((2y² + 3x²) (-x) − 4xy²) / (8y⁵)
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
The events are independent. By definition, it means that knowledge about one event does not help you predict the second, and this is the case: even if you knew that you rolled an even number on the first cube, would you be more or less confident about rolling a six on the second? No.
An example in which two events about rolling cubes are dependent could be something like:
Event A: You roll the first cube
Event B: The second cube returns a higher number than the first one.
In this case, knowledge on event A does change you view on event B (and vice versa): if you know that you rolled a 6 on the first cube you don't want to bet on event B, while if you know that you rolled a 1 on the first cube, you're certain that event B will happen.
Conversely, if you know that event B has happened, you are more likely to think that the first cube rolled a small number, and vice versa.
Jdnsjaiajiajsiiaiaia ajjakskskks
I'm sorry this is gauge is there anymore info
Answer:
The deepest that Amy dove below the ocean's surface is 5 feet.
Step-by-step explanation:
Let the deepest that Amy dove below the ocean's surface be x.
7x = 35
<u>x = 5 ft</u>