1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
14

Is it always true that multiplying a negative factor by a positive factor results in a negative? If yes, provide an example. If

no provide a counter-example. PLEASE ANSWER!
Mathematics
2 answers:
vredina [299]3 years ago
8 0

Answer:

yes

Step-by-step explanation:

-5x5= -25

-1x4= -4

9x-9= -81

no counter example except if u count -2x0=0

Fed [463]3 years ago
3 0

Answer:

yes because -3x4 would be negative 3 four times, reseulting in a negative number

Step-by-step explanation:

hope this helped

You might be interested in
I NEED HELP WITH THIS IVE RETAKEN IT LIKE 4 TIMES PLS HELP
Aleksandr-060686 [28]

Answer:

(a)=40  (b)=60

Step-by-step explanation:

(a)=

So first 70 +70 = 140 then 180-140 = 40

(b)

So first 180/3 = 60 all angles =60

3 0
3 years ago
Read 2 more answers
Andre can run 5 miles in 40 minutes. At that rate of speed, how long would it take him to run 10 kilometers? Use the conversion
matrenka [14]

Answer:

50 minutes = B

Step-by-step explanation:

Andre can run 5 miles in 40 minutes

for 1 miles = 40/5 = 8 minutes

  • for 10 kilometres

1 mile = 1.61 kilometres

x = 10 kilometres

x= (10x1)/1.61= 10/1.61 = 6.21miles

  • for 1 miles = 40/5 = 8 minutes
  • 6.21 miles = 8 x 6.21 = 49.689 minutes ≈ 50 minutes = B
7 0
4 years ago
Can someone help me with this? PLs i'm so confused!
barxatty [35]
1. E. sine\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{5}{13}

2. L. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{12}{13}

3. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{5}{12}

4. Y. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{5}{13}

5. W. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{12}{13}

6. tan\ B = \frac{b}{a} = \frac{adjacent}{opposite} = \frac{AC}{BC} = \frac{12}{5} = 2\frac{2}{5}

7. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{2}

8. W. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{\sqrt{3}}{2}

9. I. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}

10. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{2}

11. E. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{\sqrt{3}}{1} = \sqrt{3}

12. I. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}

13. U. sin\ A = \frac{a}{c} = \frac{hypotenuse}{opposite} = \frac{BC}{AB} = \frac{12}{15} = \frac{4}{5}

14. I. cos\A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{9}{15} = \frac{3}{5}

15. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{12}{9} = \frac{4}{3} = 1\frac{1}{3}

16. R. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{4}{\sqrt{65}} = \frac{4}{\sqrt{65}} * \frac{\sqrt{65}}{\sqrt{65}} = \frac{4\sqrt{65}}{65}

17. M. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{7}{4} = 1\frac{3}{4}

18. N. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{4}{7}

19. L. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{16}{34} = \frac{8}{17}

20. H. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \fac{AC}{AB} = \frac{30}{34} = \frac{15}{17}

21. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{16}{30} = \frac{8}{15}

22. O. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

23. O. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

24. N. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{1} = 1
7 0
4 years ago
Go sub to Aliendog10me on you tube
timurjin [86]

Answer:

I subbed you're welcome

6 0
3 years ago
What is the quotient? 28/25,704
ankoles [38]

Answer:

  see the attached

Step-by-step explanation:

The fraction reduces to 1/918, which has an equivalent decimal fraction with a 48-digit repeat. The first 9 significant digits of that fraction are shown in the attachment.

\dfrac{28}{25704}=\dfrac{1}{918}\\\\=0.0\overline{010893246187363834422657952069716775599128540305}

8 0
3 years ago
Other questions:
  • I need help please only number nine
    8·2 answers
  • Which example would represent a negative number? Question 5 options: spending money gaining weight the temperature rising having
    7·1 answer
  • Halla dos numeros consecutivos cuyo producto sea 4224.
    15·1 answer
  • The engineers designing the All Aboard Railroad between Boca Raton and
    13·1 answer
  • If a pyramid had a base of area 4 and height of 6, what is the volume
    6·2 answers
  • The Surface Area of this cylinder rounded to the nearest square
    8·1 answer
  • Find the slope of line between(-3,5) and (5,-4)
    11·1 answer
  • Asap plzzzzz<br> which two months experienced the earliest sunrise?
    12·1 answer
  • Simplify the following expression.<br><br><br> 1/2 divded by 1/10
    13·2 answers
  • Circle A has a radius of 5 and circle B has a radius of 6. What is the ratio of the area of circle A to that of circle B
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!