Answer:
860 J / mol
Explanation:
Enthalpy = Energy / no. of moles
no. of moles = mass / molar mass
Take the atomic mass of H = 1.0,
molar mass of H2 = 1.0 x 2
= 2.0
no. of moles of H2 = 9.00/2
= 4.5 mol
Hence,
Enthalpy = 3870 / 4.5
=860 J / mol
Answer:
When two forces acting on an object are of similar size but acting in opposite directions, we say they are forces of balance. If the forces on an object are balanced (or if there are no forces acting on it), this is what happens: the object stays stationary
Answer:
The value of dissociation constant of the monoprotic acid is
.
Explanation:
The pH of the solution = 2.46
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![2.46=-\log[H^+]](https://tex.z-dn.net/?f=2.46%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=0.003467 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.003467%20M)

Initially
0.0144 0 0
At equilibrium
(0.0144-x) x x
The expression if an dissociation constant is given by :
![K_a=\frac{[A^-][H^+]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BA%5E-%5D%5BH%5E%2B%5D%7D%7B%5BHA%5D%7D)

![x=[H^+]=0.003467 M](https://tex.z-dn.net/?f=x%3D%5BH%5E%2B%5D%3D0.003467%20M)


The value of dissociation constant of the monoprotic acid is
.