Answer:
Some bacteria like <em><u>rhizobium</u></em> and <u><em>blue green algae</em></u> are able to fix nitrogen gas from the atmosphere to enrich the soil with nitrogen compounds and increase its fertility. The nitrogen-fixing bacteria and blue green algae are called <u><em>biological nitrogen fixers.</em></u>
It’s water vapor, does this help?
Explanation:
(A)role of nittogen fixing bacteria
=Nitrogen-fixing bacteria, microorganisms capable of transforming atmospheric nitrogen into fixed nitrogen (inorganic compounds usable by plants). More than 90 percent of all nitrogen fixation is effected by these organisms, which thus play an important role in the nitrogen cycle.
B)role of nitrifying bacteria
=Nitrifying bacteria convert the most reduced form of soil nitrogen, ammonia, into its most oxidized form, nitrate. In itself, this is important for soil ecosystem function, in controlling losses of soil nitrogen through leaching and denitrification of nitrate.
C)role of denitrifying bacteria
=Denitrifying bacteria converts nitrates back to nitrogen gas.
Answer:
magnetic Flux ropes
Explanation:
Magnetic flux ropes (also known as coronal loops and solar prominences) sit on the surface of the sun, with matter and energy flowing through them, for hours or days.
The molecular formula :
C₆H₁₄O₃PF
<h3>Further explanation</h3>
Given
39.10% carbon, 7.67% hydrogen, 26.11% oxygen, 16.82% phosphorus, and 10.30% fluorine.
Required
The molecular formula
Solution
mol ratio :
C = 39.1 : 12 = 3.258
H = 7.67 : 1 = 7.67
O = 26.11 : 16 = 1.632
P = 16.82 : 31 = 0.543
F = 10.3 : 19 = 0.542
Divide by 0.542
C = 6
H : 14
O = 3
P = 1
F = 1
The empirical formula :
C₆H₁₄O₃PF
(The empirical formula)n = the molecular formula
(C₆H₁₄O₃PF)=184.1
(6.12+14.1+3.16+31+19)n=184.1
(184)n=184.1
n = 1