A. x∧2+(x+20∧2=150∧2 is correct.
because you need to plug the numbers into the pathagoreum theorum which is
a∧2+b∧2=c∧2
150 is our c because it is the side right accross from the right angle.
which number is a and which number is b does not matter.
x is the distance north so we can assign that to a and the distace east is north plus 20 so we can assign b to x+20.
A quadrilateral is any figure with 4 sides, no matter what the lengths of
the sides or the sizes of the angles are ... just as long as it has four straight
sides that meet and close it up.
Once you start imposing some special requirements on the lengths of
the sides, or their relationship to each other, or the size of the angles,
you start making special kinds of quadrilaterals, that have special names.
The simplest requirement of all is that there must be one pair of sides that
are parallel to each other. That makes a quadrilateral called a 'trapezoid'.
That's why a quadrilateral is not always a trapezoid.
Here are some other, more strict requirements, that make other special
quadrilaterals:
-- Two pairs of parallel sides . . . . 'parallelogram'
-- Two pairs of parallel sides
AND all angles the same size . . . . 'rectangle'
(also a special kind of parallelogram)
-- Two pairs of parallel sides
AND all sides the same length . . . 'rhombus'
(also a special kind of parallelogram)
-- Two pairs of parallel sides
AND all sides the same length
AND all angles the same size . . . . 'square'.
(also a special kind of parallelogram, rectangle, and rhombus)
Answer:
C. 2x + 5
Step-by-step explanation:
Kelly: x
Tim: 2 × x = 2x
Jim: 2x + 5
hope it helps :)
Answer:
answer is C
Step-by-step explanation:
General equation of a line is expressed as shown:
y = mx+c where;
m is the slope or gradient of the line
c is the intercept of the line
Given the equation of the line graph as y =2.5x
Comparing the given equation with the general equation, it is seen that m = 2.5 and c = 0 (since there is no value for the intercept)
Based on the explanation, the y-intercept of the graph is therefore 0