Hi there!
2³ [ (15 - 7) × (4 ÷ 2) ] = 8 [ 8 × 2 ] = 8 × 16 = 128
Hence,
The required answer is 128
~ Hope it helps!
The following are the ages of 13 history teachers in a school district. 24, 27, 29, 29, 35, 39, 43, 45, 46, 49, 51, 51, 56 Notic
pishuonlain [190]
The five-number summary and the interquartile range for the data set are given as follows:
- Interquartile range: 50 - 29 = 21.
<h3>What are the median and the quartiles of a data-set?</h3>
- The median of the data-set separates the bottom half from the upper half, that is, it is the 50th percentile.
- The first quartile is the median of the first half of the data-set.
- The third quartile is the median of the second half of the data-set.
- The interquartile range is the difference between the third quartile and the first quartile.
In this problem, we have that:
- The minimum value is the smallest value, of 24.
- The maximum value is the smallest value, of 56.
- Since the data-set has odd cardinality, the median is the middle element, that is, the 7th element, as (13 + 1)/2 = 7, hence the median is of 43.
- The first quartile is the median of the six elements of the first half, that is, the mean of the third and fourth elements, mean of 29 and 29, hence 29.
- The third quartile is the median of the six elements of the second half, that is, the mean of the third and fourth elements of the second half, mean of 49 and 51, hence 50.
- The interquartile range is of 50 - 29 = 21.
More can be learned about five number summaries at brainly.com/question/17110151
#SPJ1
Answer:
A. 3/5
Step-by-step explanation:
Simple math, 9/15. Divide both by 3.
3*3=9 and 3*5=15 so answer is 3/5!
Answer:
Divided 54 divided by 6 = 9
Step-by-step explanation:
Answer:
Yes
Step-by-step explanation:
The definition of a rational number is a number that can be represented as a fraction. Since 56/7 is a fraction it must be a rational number. An irrational number is a number that cannot be represented as a fraction because it never ends and repeats without a pattern forever. An example of this is pi because pi can never exactly be represented as a fraction.