Answer:

Explanation:
Hello!
In this case, since the energy involved during a heating process is shown below:

Whereas the specific heat of water is 4.184 J/(g°C), we can compute the heated mass of water by the addition of 11.9 kJ (11900 J) of heat as shown below:

Thus, by plugging in, we obtain:

Best regards!
Answer:
Pressure, P = 67.57 atm
Explanation:
<u>Given the following data;</u>
- Volume = 0.245 L
- Number of moles = 0.467 moles
- Temperature = 159°C
- Ideal gas constant, R = 0.08206 L·atm/mol·K
<u>Conversion:</u>
We would convert the value of the temperature in Celsius to Kelvin.
T = 273 + °C
T = 273 + 159
T = 432 Kelvin
To find the pressure of the gas, we would use the ideal gas law;
PV = nRT
Where;
- P is the pressure.
- V is the volume.
- n is the number of moles of substance.
- R is the ideal gas constant.
- T is the temperature.
Making P the subject of formula, we have;

Substituting into the formula, we have;


<em>Pressure, P = 67.57 atm</em>
Answer:
Its B
Explanation: I did the test passed btw
Answer:
Mg(s) + 2H⁺(aq) ⟶ Mg²⁺(aq) + H₂(g)
Explanation:
A net ionic equation shows all the ionic substances as ions and shows the correct state of each substance.
Answer:
it has to be a no cap !! buh