<span>Vinegar and baking soda react to form a new gaseous substance.
</span><span>The reaction between Vinegar and baking soda has been one of the most common examples of Chemical Reaction.</span>
Here is the complete question.
Benzalkonium Chloride Solution ------------> 250ml
Make solution such that when 10ml is diluted to a total volume of 1 liter a 1:200 is produced.
Sig: Dilute 10ml to a liter and apply to affected area twice daily
How many milliliters of a 17% benzalkonium chloride stock solution would be needed to prepare a liter of a 1:200 solution of benzalkonium chloride?
(A) 1700 mL
(B) 29.4 mL
(C) 17 mL
(D) 294 mL
Answer:
(B) 29.4 mL
Explanation:
1 L = 1000 mL
1:200 solution implies the
in 200 mL solution.
200 mL of solution = 1g of Benzalkonium chloride
1000 mL will be 
200mL × 1g = 1000 mL × x(g)
x(g) = 
x(g) = 0.2 g
That is to say, 0.2 g of benzalkonium chloride in 1000mL of diluted solution of 1;200 is also the amount in 10mL of the stock solution to be prepared.
∴ 
y(g) = 
y(g) = 5g of benzalkonium chloride.
Now, at 17%
concentrate contains 17g/100ml:
∴ the number of milliliters of a 17% benzalkonium chloride stock solution that is needed to prepare a liter of a 1:200 solution of benzalkonium chloride will be;
= 
z(mL) = 
z(mL) = 29.41176 mL
≅ 29.4 mL
Therefore, there are 29.4 mL of a 17% benzalkonium chloride stock solution that is required to prepare a liter of a 1:200 solution of benzalkonium chloride
Answers and Explanation:
a)- The chemical equation for the corresponden equilibrium of Ka1 is:
2. HNO2(aq)⇌H+(aq)+NO−2
Because Ka1 correspond to a dissociation equilibrium. Nitrous acid (HNO₂) losses a proton (H⁺) and gives the monovalent anion NO₂⁻.
b)- The relation between Ka and the free energy change (ΔG) is given by the following equation:
ΔG= ΔGº + RT ln Q
Where T is the temperature (T= 25ºc= 298 K) and R is the gases constant (8.314 J/K.mol)
At the equilibrium: ΔG=0 and Q= Ka. So, we can calculate ΔGº by introducing the value of Ka:
⇒ 0 = ΔGº + RT ln Ka
ΔGº= - RT ln Ka
ΔGº= -8.314 J/K.mol x 298 K x ln (4.5 10⁻⁴)
ΔGº= 19092.8 J/mol
c)- According to the previous demonstation, at equilibrium ΔG= 0.
d)- In a non-equilibrium condition, we have Q which is calculated with the concentrations of products and reactions in a non equilibrium state:
ΔG= ΔGº + RT ln Q
Q= ((H⁺) (NO₂⁻))/(HNO₂)
Q= ( (5.9 10⁻² M) x (6.7 10⁻⁴ M) ) / (0.21 M)
Q= 1.88 10⁻⁴
We know that ΔGº= 19092.8 J/mol, so:
ΔG= ΔGº + RT ln Q
ΔG= 19092.8 J/mol + (8.314 J/K.mol x 298 K x ln (1.88 10⁻⁴)
ΔG= -2162.4 J/mol
Notice that ΔG<0, so the process is spontaneous in that direction.
A 1-liter bag of IV solution would contain how many cubic centimeters of fluid?
1000 cc
Bohr changed the model of the atom by proposing that electrons travelled in circular orbits with specific energy levels.