1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
3 years ago
13

Can you guys help!!!

Chemistry
2 answers:
Advocard [28]3 years ago
7 0

Answer:

D. lt is exothermic is the correct ans

Gekata [30.6K]3 years ago
5 0

Answer:

D is the answer...

You might be interested in
100 PIONTSSSSS HELP ASAP
valina [46]

Left Panel

Short answer A

<em><u>Solution</u></em>

Since you have been given choices, my sloppy numbers will do, but it anyone is going to see this, YOU SHOULD CLEAN  THEM UP WITH THE NUMBERS THAT COME FROM YOUR PERIODIC TABLE.

Equation

Sodium Phosphate + Calcium Chloride ===> Sodium Chloride + Calcium Phosphate.

Na3PO4 + CaCl2 ===> NaCl + Ca3(PO4)2

<em><u>Step One</u></em>

Balance the Equation

2Na2PO4 + 3CaCl2 ==> 6NaCl + Ca3(PO4)2

<em><u>Step Two</u></em>

Find the molar mass of CaCl2

Ca = 40

2Cl = 71

Molar Mass = 40 + 71 = 111 grams/mole

<em><u>Step Three</u></em>

Find the number of moles of CaCl2

Given mass = 379.4

Molar Mass = 111

moles = given Mass / molar Mass

moles of CaCl2 = 379.4/111 = 3.418 moles

<em><u>Step Four</u></em>

Find the number of moles of Ca3(PO4)2 needed.

This requires that you use the balance numbers from the balanced equation.

For every 3 moles of CaCl2 you have, you get 1 mole of Ca3(PO4)2

n_moles of Ca3(PO4)2 = 3.418 / 3 = 1.13933 moles

<em><u>Step Five</u></em>

Find the molar mass of Ca3(PO4)2

From the periodic table,

3Ca = 3 * 40 = 120

2 P  = 2 * 31 =    62

8 O = 8 * 16   =128

Molar Mass = 120 + 62 + 128= 310 grams per mole.

<em><u>Step Six</u></em>

1 mole of Ca3(PO4)2 has a molar mass of 310 gram

1.13933 moles of Ca3(PO4)2 = x

x = 1.13933 moles * 310 grams /mole

x = 353.2 grams. As you can see, even with my rounding I'm only out 0.3 of a gram. DON'T FORGET TO PUT THIS TO THE PROPER SIG DIGS IF SOMEONE ELSE IS GOING TO SEE IT.

Middle Panel

Short Answer C

Equation

2HCl + Mg ===> H2 + MgCl2

The object of the first part of the game is to find the number of moles of H2.

<em><u>Step One</u></em>

Find the moles of HCl

1 mole HCl = 35.5 + 1 = 36.5

n = given mass divided by molar mass

n = 49 grams / 36.5 = 1.34 moles.

The balanced equation tells you that for ever mole of H2 produced, you need 2 moles of HCl. That's what the balance numbers are for.

So the number of moles of H2 is 1.34 / 2 = 0.671 moles of H2.

Now we come to Part II. We have to use an new friend of yours that I have seen only once before from you.

Find V using PV = nRT

R is going to be in kPa so the value of R = 8.314

V = ???

n = 0.671 moles

T = 25 + 273 = 298oK

P = 101.3 kPa

101.3 * V= 0.671*8.314 * 298

V = 0.671 * 8.314 * 298 / 101.3

V = 16.4

The answer is C and again, I have rounded almost everything except R, although it can go out to 8 places.

Right Panel

I can't see the panel. I don't know what the problem is. Never mind I got it. I'm going to be a little skimpy on this one since I've done two like it and they are long.

LiOH + HBr ===> LiBr + H2O and the equation is balanced.

You have to figure out the moles of LiOH and HBr. Use the LOWEST number of moles

n_LiOH = given mass / molar mass = 117/(7 + 16 + 1) = 117 / 24 = 4.875 moles

n_HBr = given mass / molar mass =  141/(1 + 80) = 141 / 81 = 1.741 moles

HBr is the lower number. That's all the LiBr you are going to get is 1.741. There is no adjustment to be made from the balance equation.

n = given mass / molar mass  multiply both sides by the molar mass

n * Molar mass (LiBr) = n * (7 + 80) = 1.741 * 87 = 151 grams of

The answer is C


6 0
2 years ago
What most likely happens during this reaction
Bad White [126]

Answer:

I think that it is A I am sorry if I am wrong

Explanation:

8 0
2 years ago
A(n) _______ is a substance of two or more atoms held together with chemical bonds.
sergejj [24]
It is called a molecule
3 0
3 years ago
A solution at 25 degrees Celsius is 1.0 × 10–5 M H3O+. What is the concentration of OH– in this solution? 1.0 × 10–5 M OH– 1.0 ×
Triss [41]

Answer:

1.0 × 10⁻⁹ M.

Explanation:

<em>∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.</em>

[H₃O⁺] = 1.0 x 10⁻⁵ M.

<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(1.0 x 10⁻⁵ M) = <em>1.0 × 10⁻⁹ M.</em>

6 0
3 years ago
Read 2 more answers
Which type of front does not move <br><br>​
shusha [124]
Stationary Front: a front that is not moving. When a warm or cold front stops moving, it becomes a stationary front.
5 0
3 years ago
Other questions:
  • a sample of an oxide of iron was reduced to iron by heating with hydrogen. the mass of iron obtained was 4.35g and mass of water
    5·1 answer
  • 23. A neutralization reaction between an acid and a base always produces
    10·2 answers
  • Identify the acid in the following acid-base reaction
    6·1 answer
  • Describe five sources of chemical weathering
    5·1 answer
  • Define and describe four properties of elements that display periodicity (show a trend) on the periodic table.
    14·1 answer
  • When sodiuni chloride reacts with silver ni-
    9·1 answer
  • Which is a form of kinetic energy?
    12·1 answer
  • How has technology impacted creative expression over the last 100 years? What has changed? Where is it leading, what's next?
    9·1 answer
  • 2 reasons for chemical reactivity of nitrogen
    10·1 answer
  • What mass in kilograms of E85( d = 0.758 g/mL ) can be contained in a 13.0 gal tank?Express your answer to three significant fig
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!