Answer: 3
Explanation:
An oxide-reduction reaction or, simply, redox reaction, is a <u>chemical reaction in which one or more electrons are transferred between the reactants</u>, causing a change in their oxidation states, which is the hypothetical electric charge that the atom would have if all its links with different elements were 100% ionic.
For there to be a reduction-oxidation reaction, in the system there must be an element that yields electrons and another that accepts them:
-
The oxidizing agent picks up electrons and remains with a state of oxidation inferior to that which it had, that is, it is reduced.
- The reducing agent supplies electrons from its chemical structure to the medium, increasing its oxidation state, ie, being oxidized.
To balance a redox equation you must <u>identify the elements that are oxidized and reduced and the amount of electrons that they release or capture, respectively.
</u>
In the reaction that arises in the question the silver (Ag) is reduced <u>because it decreases its oxidation state from +1 to 0</u> and the aluminum (Al) is oxidized because <u>its oxidation state increases from 0 to +3</u>, releasing 3 electrons (e⁻). Then we can raise two half-reactions:
Ag⁺ + e⁻ → Ag⁰
Al⁰ → Al⁺³ + 3e⁻
In order to obtain the balanced equation, we must multiply the first half-reaction by 3 so that, when both half-reactions are added, the electrons are canceled. In this way:
(Ag⁺ + e⁻ → Ag⁰ ) x3
Al⁰ → Al⁺³ + 3e⁻ +
-------------------------------------
3Ag⁺ + Al⁰ → 3Ag⁰ + Al⁺³
So, the coefficient of silver in the final balanced equation is 3.
The answer is (1) 10. The protons of Mg atom is 12. So the Mg atom has 12 electrons. The Mg2+ ion has lost two electrons so it has two positive charge. Then the answer is 10 electrons.
Answer:
Objects with the same charge repel each other, and objects with opposite charges attract each other.
Explanation:
The Coulomb law states that opposite charges attract each other and like charges repel each other. That means two positive charges repel each other but a positive and a negative charge attract.
Answer:
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Explanation: