Answer:
Explanation:
(a) Part 1:
reaction. This is a nucleophilic substitution reaction in which we have two steps. Firstly, chlorine, a good leaving group, leaves the carbon skeleton to form a relatively stable secondary carbocation. This carbocation is then attacked by the hydroxide anion, our nucleophile, to form the final product.
To summarize, this mechanism takes places in two separate steps. The mechanism is attached below.
Part 2:
reaction. This is a nucleophilic substitution reaction in which we have one step. Our nucleophile, hydroxide, attacks the carbon and then chlorine leaves simultaneously without an intermediate carbocation being formed.
The mechanism is attached as well.
(b) The rate determining step is the slow step. Formation of the carbocation has the greatest activation energy, so this is our rate determining step for
. For
, we only have one step, so the rate determining step is the attack of the nucleophile and the loss of the leaving group.
Answer:0.286M
Explanation:
10.7g / 149.89g/mol×0.25L
Ca-Cl is an ionic bond. We know this because the difference between their electronegativities is 2.16.The electronegativity tells us which atom will attract the electron more than the other. Hence, chlorine attracts the electron a lot more than the calcium.A difference of more than 1.6 (or 1.7 depending on the source) implies that the electrons are so unevenly shared, that the bond is ionic, rather than polar covalent.
Answer is: <span>a hill over which a wagon is pushed.
</span>For all chemical
reaction some energy is required and that energy is called activation
energy (<span>energy
that needs to be absorbed for a chemical reaction to start)<span>.
There are two types of reaction: endothermic
reaction (chemical reaction that absorbs more energy than it releases)
and exothermic reaction (chemical reaction that releases more energy than
it absorbs).
</span></span>R<span>eactions
occur faster with a catalyst because they require less activation energy.</span>