The linear equation is y = -x - 6
Step-by-step explanation:
To form a linear equation from two points lie on the line which the equation represented it
- Find the slope of the line by using the formula

- Then use the slope-intercept form of the equation y = m x + b
- To find the value of b substitute x and y of the equation by the coordinates of one of the two given points
∵ Points (-2 , -4) and (-3 , -3) lie on the line
∴
= -2 and
= -3
∴
= -4 and
= -3
- Substitute these values in the formula of the slope
∵ 
∴ m = -1
∵ The form of the equation is y = m x + b
∵ m = -1
∴ y = (-1) x + b
∴ y = -x + b
To find b substitute x and y in the equation by the coordinates of
point (-2 , -4) OR (-3 , -3)
∵ x = -3 and y = -3
∴ -3 = -(-3) + b
∴ -3 = 3 + b
- Subtract 3 from both sides
∴ -6 = b
∴ The equation is y = -x + (-6)
∴ y = -x - 6
The linear equation is y = -x - 6
Learn more:
You can learn more about linear equation in brainly.com/question/4326955
#LearnwithBrainly
I = p * r * t
264 = p * .06 * 2
264 = .12p
Divide both sides by .12
p = $2200
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:

- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
Multiples of 2: 2,4,6,8
Multiples of 6:6,12,18,24
Multiples of 12:12,24,36,48
Multiples of 25:25,50,75,100
Further explanation:
A multiple is a number that is obtained by multiplying an integer with that number.
We have to find multiples of given numbers:
So,
<u>1. Multiples of 2</u>

<u>2. Multiples of 6</u>

<u>3. Multiples of 12</u>

<u>4. Multiples of 25</u>

Keywords: Multiples, Non-zero multiples
Learn more about multiples at:
#LearnwithBrainly