Answer
2) 1.5×10-2 m
Explanation
The potential difference is related to the electric field by:
(1)
where
is the potential difference
E is the electric field
d is the distance
We want to know the distance the detectors have to be placed in order to achieve an electric field of

when connected to a battery with potential difference

Solving the equation (1) for d, we find

Answer:
Shadows are made by blocking light. Light rays travel from a source in straight lines. If an opaque (solid) object gets in the way, it stops light rays from traveling through it. The size and shape of a shadow depend on the position and size of the light source compared to the object.
Explanation:
Answer:
Approximately
, assuming friction between the vehicle and the ground is negligible.
Explanation:
Let
denote the mass of the vehicle. Let
denote the initial velocity of the vehicle. Let
denote the spring constant (needs to be found.) Let
denote the maximum displacement of the spring.
Convert velocity of the vehicle to standard units (meters per second):
.
Initial kinetic energy (
) of the vehicle:
.
When the vehicle is brought to a rest, the elastic potential energy (
) stored in the spring would be:
.
By the conservation of energy, if the friction between the vehicle and the ground is negligible, the initial
of the vehicle should be equal to the
of the vehicle. In other words:
.
Rearrange this equation to find an expression for
, the spring constant:
.
Substitute in the given values
,
, and
:

Answer:
The load that can be lifted is equal to the weight W = F2A1/A2
Explanation:
According to Pascal principle which states that the pressure applied to a liquid confined in a container will be transmitted equally to all other parts of the container.
Since pressure = Force/Area
The force F2 applied at one end of the piston will generate a pressure of F2/A2. This pressure generated will be transmitted to the other end of the piston of area A1 to lift the load through a distance.
The piston where the load is will experience an upward force F1 which is equal to Pressure × Area.
The pressure experienced by the load is applied by force F2.
Force on the load = (Pressure exerted by Force F2) × Area at the larger end A1
Force on the load = F2/A2 × A1
Since the load experiences a weight W
The weight will be equal to the force on the load which is to be lifted i.e W =Force on the load.
W = F2A1/A2
The load that can be lifted is equal to the weight W = F2A1/A2
Answer:
B) Tommy had a positive acceleration between noon and 12:30 pm.
Explanation:
Acceleration is defined as the rate of change of velocity:

where
v is the final velocity
u is the initial velocity
t is the time
In the problem,
- At noon, Tommy is walking at a velocity of 4 mi/h
- At 12.30 pm, Tommy is walking at a velocity of 6 mi/h
- A time of half an hour (0.5 h) passed between the two moments
So Tommy's acceleration is

and the acceleration is positive, since the velocity has increased.