Answer:
(a) 2 (b) 4 (c) 4
Explanation:
Significant figures : The figures in a number which express the value -the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
Rules for significant figures:
- Digits from 1 to 9 are always significant and have infinite number of significant figures.
- All non-zero numbers are always significant. For example: 654, 6.54 and 65.4 all have three significant figures.
- All zero’s between integers are always significant. For example: 5005, 5.005 and 50.05 all have four significant figures.
- All zero’s preceding the first integers are never significant. For example: 0.0078 has two significant figures.
- All zero’s after the decimal point are always significant. For example: 4.500, 45.00 and 450.0 all have four significant figures.
- All zeroes used solely for spacing the decimal point are not significant. For example : 8000 has one significant figure.
As per question,
0.000054 has 2 significant figures.
3.001 x 10⁵ has 4 significant figures.
5.600 has 4 significant figures.
Answer:
B.) a stretched rubber band
Explanation:
-
Answer:
4. both blocks will both have the same amount of kinetic energy.
Explanation:
When the blocks are released free from the compression force, the spring exerts equal and opposite force on each block but the block with heavier (double) mass will attain slower ( half ) speed as compared to the lighter block according to the law of inertia. This works in synchronization to energy conservation.
Spring force is given as:

where:
length of compression in the spring
<u>We know kinetic energy is given by:</u>

Hence the kinetic energy of both the blocks is equal when they are released to move free.
Answer:
a baseball player swinging a bat and hitting a baseball, causing the bat to shatter
Explanation
took the test, hope it helps
Answer:
Because of height and lower atmospheric pressure.
Explanation:
Atmospheric pressure affects aerodynamic drag, lower pressure means less drag. At the altitude of Denver the air has lower pressure, this allows baseball players to hit balls further away.
Another aerodynamic effect is the Magnus effect. This effect causes spinning objects to curve their flightpath, which is what curveball pitchers do. A lower atmospheric pressure decreases the curving of the ball's trajectory.