Answer:
A. 1.64 J
Explanation:
First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

where
n is the number of moles
m = 1.4 mg = 0.0014 g is the mass of mercury
Mm = 200.6 g/mol is the molar mass of mercury
Substituting, we find

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

where
n is the number of moles
is the Avogadro number
Substituting,
atoms
The energy emitted by each atom (the energy of one photon) is

where
h is the Planck constant
c is the speed of light
is the wavelength
Substituting,

And so, the total energy emitted by the sample is

Answer: Neon is a colorless gas at room temperature: Physical property
At room temperature, mercury is a liquid: Physical property
Apple slices turn brown when exposed to air: Chemical property
Phosphorus will ignite when exposed to air: Chemical property
Explanation:
Physical property is defined as the property of a substance which becomes evident during physical change in which there is alteration in shape, size etc. No new substance gets formed during physical change.
Example: Neon is a colorless gas at room temperature
At room temperature, mercury is a liquid.
Chemical property is defined as the property of a substance which becomes evident during chemical change in which a change in chemical composition takes place. A new substance is formed in these reactions.
Example: Apple slices turn brown when exposed to air: It undergoes oxidation which is a chemical change
Phosphorus will ignite when exposed to air: It undergoes oxidation which is a chemical change
Answer:
4.5m/s
Explanation:
Linear speed (v) = 42.5m/s
Distance(x) = 16.5m
θ= 49.0 rad
radius (r) = 3.67 cm
= 0.0367m
The time taken to travel = t
Recall that speed = distance / time
Time = distance / speed
t = x/v
t = 16.5/42.5
t = 0.4 secs
tangential velocity is proportional to the radius and angular velocity ω
Vt = rω
Angular velocity (ω) = θ/t
ω = 49/0.4
ω = 122.5 rad/s
Vt = rω
Vt = 0.0367 * 122.5
Vt =4.5 m/s

But

- Hence higher the radius lower the voltage
- Lower the voltage higher the capacitance .
<h3>100cm diameter having aluminium sphere has a larger capacitance</h3>
Answer:
66.35m/s
Explanation:
Para resolver el ejercicio es necesario la aplicación de las ecuaciones de continuidad, que expresan que

From our given data we can lower than:


So using the continuity equation we have




Therefore the velocity at the exit end is 66.35m/s