Answer:
a) 2.4 mm
b) 1.2 mm
c) 1.2 mm
Explanation:
To find the widths of the maxima you use the diffraction condition for destructive interference, given by the following formula:

a: width of the slit
λ: wavelength
m: order of the minimum
for little angles you have:

y: height of the mth minimum
a) the width of the central maximum is 2*y for m=1:

b) the width of first maximum is y2-y1:
![w=y_2-y_1=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[2-1]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_2-y_1%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B2-1%5D%3D1.2mm)
c) and for the second maximum:
![w=y_3-y_2=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[3-2]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_3-y_2%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B3-2%5D%3D1.2mm)
Taste: salty
color: varies. ex: white, clear, purple, yellow, etc.
status: mineral
Compression is above the equilibrium and rarefaction is below
Answer:

Explanation:
We could use the following suvat equation:

where
s is the vertical displacement of the coin
v is its final velocity, when it hits the water
t is the time
g is the acceleration of gravity
Taking upward as positive direction, in this problem we have:
s = -1.2 m

And the coin reaches the water when
t = 1.3 s
Substituting these data, we can find v:

where the negative sign means the direction is downward.