1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
3 years ago
15

2 sin x cos x – sin x = 0

Mathematics
1 answer:
solniwko [45]3 years ago
7 0

Answer: PiN, Pi/3+2PiN, 5Pi/3+2PiN

Step-by-step explanation: Use formula sheet

You might be interested in
What are the values of x and y?
Natasha_Volkova [10]
The answer is the second option
3 0
3 years ago
**Spam answers will not be tolerated**
Morgarella [4.7K]

Answer:

f'(x)=-\frac{2}{x^\frac{3}{2}}

Step-by-step explanation:

So we have the function:

f(x)=\frac{4}{\sqrt x}

And we want to find the derivative using the limit process.

The definition of a derivative as a limit is:

\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

Therefore, our derivative would be:

\lim_{h \to 0}\frac{\frac{4}{\sqrt{x+h}}-\frac{4}{\sqrt x}}{h}

First of all, let's factor out a 4 from the numerator and place it in front of our limit:

=\lim_{h \to 0}\frac{4(\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x})}{h}

Place the 4 in front:

=4\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x}}{h}

Now, let's multiply everything by (√(x+h)(√(x))) to get rid of the fractions in the denominator. Therefore:

=4\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt x}}{h}(\frac{\sqrt{x+h}\sqrt x}{\sqrt{x+h}\sqrt x})

Distribute:

=4\lim_{h \to 0}\frac{({\sqrt{x+h}\sqrt x})\frac{1}{\sqrt{x+h}}-(\sqrt{x+h}\sqrt x)\frac{1}{\sqrt x}}{h({\sqrt{x+h}\sqrt x})}

Simplify: For the first term on the left, the √(x+h) cancels. For the term on the right, the (√(x)) cancel. Thus:

=4 \lim_{h\to 0}\frac{\sqrt x-(\sqrt{x+h})}{h(\sqrt{x+h}\sqrt{x}) }

Now, multiply both sides by the conjugate of the numerator. In other words, multiply by (√x + √(x+h)). Thus:

= 4\lim_{h\to 0}\frac{\sqrt x-(\sqrt{x+h})}{h(\sqrt{x+h}\sqrt{x}) }(\frac{\sqrt x +\sqrt{x+h})}{\sqrt x +\sqrt{x+h})}

The numerator will use the difference of two squares. Thus:

=4 \lim_{h \to 0} \frac{x-(x+h)}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Simplify the numerator:

=4 \lim_{h \to 0} \frac{x-x-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}\\=4 \lim_{h \to 0} \frac{-h}{h(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Both the numerator and denominator have a h. Cancel them:

=4 \lim_{h \to 0} \frac{-1}{(\sqrt{x+h}\sqrt x)(\sqrt x+\sqrt{x+h})}

Now, substitute 0 for h. So:

=4 ( \frac{-1}{(\sqrt{x+0}\sqrt x)(\sqrt x+\sqrt{x+0})})

Simplify:

=4( \frac{-1}{(\sqrt{x}\sqrt x)(\sqrt x+\sqrt{x})})

(√x)(√x) is just x. (√x)+(√x) is just 2(√x). Therefore:

=4( \frac{-1}{(x)(2\sqrt{x})})

Multiply across:

= \frac{-4}{(2x\sqrt{x})}

Reduce. Change √x to x^(1/2). So:

=-\frac{2}{x(x^{\frac{1}{2}})}

Add the exponents:

=-\frac{2}{x^\frac{3}{2}}

And we're done!

f(x)=\frac{4}{\sqrt x}\\f'(x)=-\frac{2}{x^\frac{3}{2}}

5 0
3 years ago
The sales tax on a piece of furniture that cost $450 was 28.13 . what was the percent sales tax?
inysia [295]
28.13÷450= .0625111

.0625111×100= 6.25111%
4 0
3 years ago
Y/a −b= y/b −a, if a≠b<br><br> solve for y
Kamila [148]

Answer:

y= ab    if a≠b

Step-by-step explanation:

y/a −b= y/b −a

multiply each side by ab to clear the fractions

ab(y/a −b) = ab( y/b −a)

distribute

ab * y/a - ab*b = ab * y/b - ab *a

b*y - ab^2 = ay -a^2 b

subtract ay on each side

by -ay -ab^2 = ay-ay -a^2b

by -ay -ab^2 =-a^2b

add ab^2 to each side

by-ay -ab^2 +ab^2 = ab^2 - a^2b

by-ay = ab^2 - a^2b

factor out the y on the left, factor out an ab on the right

y (b-a) = ab(b-a)

divide by (b-a)

y (b-a) /(b-a)= ab(b-a)/(b-a)    b-a ≠0   or b≠a

y = ab

5 0
3 years ago
A total of 625 tickets were sold for the school play. They were either adult tickets or student tickets. There were 75 fewer stu
inn [45]

Answer:

75 less student tickets than adult tickets. The total is 625 tickets. So the student and adult tickets have to equal 625 when added.

Step-by-step explanation:

Student tickets: 275

Adult tickets: 350

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is the area of this trapezoid b2=5in. h=4in 3in b1=10in 2in​
    12·1 answer
  • 1. Mary has a mass of 40 kg and sprints at 1 m/s. How much kinetic energy does she have?
    13·1 answer
  • At Westside middle school there are 42 classrooms with a 28 desks in each. About how many desks are there?
    5·1 answer
  • tristen is a saleman whose base pay plus commissions amounted to $59,238 last year. if his base pay was $31,050 and he made $97,
    5·1 answer
  • The thickness of a one-dollar bill is 1.1 × 10-4 meters. Each measurement below is the thickness of a stack of one-dollar bills.
    8·1 answer
  • Simplify the exprssion -3/6 minus 5/7
    13·2 answers
  • If you flip a coin 4 times, how many times it is most likely to land with heads up?
    10·1 answer
  • Staghorn Coral is a type of branching Coral. It can add as much as 0.67 foot to its branches each year. Find how much a staghorn
    12·1 answer
  • Solve for p.<br> Y=1/7pk<br> P=?
    11·1 answer
  • Elena wants to make a scale drawing of her bedroom using the scale 4cm to 1m. If Wall A in the drawing is 10 cm long, what is th
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!