Answer:
?
Step-by-step explanation:
impossible to answer without knowing which is the divisor and which is the dividend.
Answer:
(6 , -1)
Step-by-step explanation:
2x+ y = 11 ----------------(I)
y = 11 - 2x --------------------(II)

Multiply the whole equation by 2

x - 10y = 16 --------------------(III)
Substitute y = 11- 2x in equation (III)
x - 10(11 - 2x) = 16
x - 110 + 20x = 16
21x - 110 = 16
21x = 16 +110
21x = 126
x = 126/21
x = 6
Plugin x = 6 in equation (II)
y = 11 - 2*6
y = 11 - 12
y = -1
Answer:
3:4.
Step-by-step explanation:
To work this out we need to find the highest multiple of 45 and 60.
15 is the largest number that goes into both of them so what we are going to do now is divide both number by 15.
45 divided by 15 = 3
60 divided by 15 = 4
Therefore the odds of selecting a red candy is 3:4.
Hope that helps. x
F(x) = -4(x - 2)² + 2
f(x) = -4((x - 2)(x - 2)) + 2
f(x) = -4(x² - 2x - 2x + 4) + 2
f(x) = -4(x² - 4x + 4) + 2
f(x) = -4(x²) + 4(4x) - 4(4) + 2
f(x) = -4x² + 16x - 16 + 2
f(x) = -4x² + 16x - 14
-4x² + 16x - 14 = 0
x = <u>-16 +/- √(16² - 4(-4)(-14))</u>
2(-4)
x = <u>-16 +/- √(256 - 224)</u>
-8
x = <u>-16 +/- √(32)
</u> -8<u>
</u>x = <u>-16 +/- 5.66
</u> -8<u>
</u>x = <u>-16 + 5.66</u> x = <u>-16 - 5.66
</u> -8 -8<u>
</u>x = <u>-10.34</u> x = <u>-21.66</u>
-8 -8
x = 1.2925 x = 2.7075
f(x) = -4x² + 16x - 14
f(1.2925) = -4(1.2925)² + 16(1.2925) - 14
f(1,2925) = -4(1.67055625) + 20.68 - 14
f(1.2925) = -6.682225 + 20.68 - 14
f(1.2925) = 13.997775 - 14
f(1.2925) = -0.002225
(x, f(x)) = (1.2925, -0.002225)
or
f(x) = -4x² + 16x - 14
f(2.7075) = -4(2.7075)² + 16(2.7075) - 14
f(2.7075) = -4(7.33055625) + 43.32 - 14
f(2.7075) = -29.322225 + 43.32 - 14
f(2.7075) = 13.997775 - 14
f(2.7075) = -0.002225
(x, f(x)) = (2.7075, -0.002225)
--------------------------------------------------------------------------------------------
f(x) = 2(x - 2)² + 1
f(x) = 2((x - 2)(x - 2)) + 1
f(x) = 2(x² - 2x - 2x + 4) + 1
f(x) = 2(x² - 4x + 4) + 1
f(x) = 2(x²) - 2(4x) + 2(4) + 1
f(x) = 2x² - 8x + 8 + 1
f(x) = 2x² - 8x + 9
2x² - 8x + 9 = 0
x = <u>-(-8) +/- √((-8)² - 4(2)(9))
</u> <u />2(2)
x = <u>8 +/- √(64 - 72)</u>
4
x = <u>8 +/- √(-8)</u>
4
x = <u>8 +/- √(8 × (-1))</u>
4
x =<u> 8 +/- √(8)√(-1)</u>
4
x = <u>8 +/- 2.83i</u>
4
x = 2 +/- 1.415i
x = 2 + 1.415i x = 2 - 1.415i
f(x) = 2x² - 8x + 9
f(2 + 1.415i) = 2(2 + 1.415i)² - 8(2 + 1.415i) + 9
f(2 + 1.415i) = 2((2 + 1.415i)(2 + 1.415i)) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 2.83i + 2.83i + 2.00225i²) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 5.66i + 2.00225) - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 11.32i + 4.0045 - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 4.0045 - 16 + 9 + 11.32i - 11.32i
f(2 + 1.415i) = 12.0045 - 16 + 9
f(2 + 1.415i) = -3.9955 + 9
f(2 + 1.415i) = 5.0045
(x, f(x)) = (2 + 1.415i, 5.0045)
or
f(x) = 2x² - 8x + 9
f(2 - 1.415i) = 2(2 - 1.415i)² - 8(2 - 1.415i) + 9
f(2 - 1.415i) = 2((2 - 1.415i)(2 - 1.415i)) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 2.83i - 2.83i + 2.00225i²) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 5.66i + 2.00225) - 16 + 11.32i + 9
f(2 - 1.415i) = 8 - 11.32i + 4.0045 - 16 + 11.32i + 9
f(2 - 1.415i) = 8 + 4.0045 - 16 + 9 - 11.32i + 11.32i
f(2 - 1.415i) = 12.0045 - 16 + 9
f(2 - 1.145i) = -3.9955 + 9
f(2 - 1.415i) = 5.0045
(x, f(x)) = (2 - 1.415i, 5.0045)
--------------------------------------------------------------------------------------------
f(x) = -2(x - 4)² + 8
f(x) = -2((x - 4)(x - 4)) + 8
f(x) = -2(x² - 4x - 4x + 16) + 8
f(x) = -2(x² - 8x + 16) + 8
f(x) = -2(x²) + 2(8x) - 2(16) + 8
f(x) = -2x² + 16x - 32 + 8
f(x) = -2x² + 16x - 24
-2x² + 16x - 24 = 0
x = <u>-16 +/- √(16² - 4(-2)(-24))</u>
2(-2)
x = <u>-16 +/- √(256 - 192)</u>
-4
x = <u>-16 +/- √(64)</u>
-4
x = <u>-16 +/- 8</u>
-4
x = <u>-16 + 8</u> x = <u>-16 - 8</u>
-4 -4
x = <u>-8</u> x = <u>-24</u>
-4 -4
x = 2 x = 6
f(x) = -2x² + 16x - 24
f(2) = -2(2)² + 16(2) - 24
f(2) = -2(4) + 32 - 24
f(2) = -8 + 32 - 24
f(2) = 24 - 24
f(2) = 0
(x,f(x)) = (2, 0)
or
f(x) = -2x² + 16x - 24
f(6) = -2(6)² + 16(6) - 24
f(6) = -2(36) + 96 - 24
f(6) = -72 + 96 - 24
f(6) = 24 - 24
f(6) = 0
(x, f(x)) = (6, 0)
<u />
Answer:
- 2(L +W) ≤ 600
- W ≤ 200
- L ≥ 2W
Step-by-step explanation:
We assume the problem wording means the length is to be at least 2 times <em>as long as</em> the width. (<em>Longer than</em> usually refers to a difference, not a scale factor.)
If we let "W" and "L" represent the width and length, respectively, then we can translate the problem statement to ...
2(L + W) ≤ 600 . . . . . . the perimeter is twice the sum of length and width
W ≤ 200 . . . . . . . . . . . . the width is at most 200 inches
L ≥ 2W . . . . . . . . . . . . . the length is at least twice the width