Answer and Step-by-step explanation: With the constant velocity motion formula, we can determine constant velocity of the object in motion whose data we collected:
x = x₀ + vt
Velocity can be calculated as:


v = 3 m/s
The beginning of the data collect, object is 40m away, then x₀ = 40.
So, equation modeling the object's path is x = 40 + 3t.
Answer:
Solutions are (6,3) and (-2,3).
Step-by-step explanation:
From the first equation given we can write:
substituting for
in the second equation given we get


∴ y=3
Putting y=3 in the first equation we get

x-2 = ±4
Hence x=6 or x=-2.
Answer:
The interquartile range is the difference between the highest and lowest values in the middle of a data set.
Step-by-step explanation:
The range is the difference between the maximum and minimum value, hence, it cannot be greater than the maximum value, which is the greatest value in a dataset, the highest value a range could have being equal to the maximum value when the minimum vlaue of the dataset is equal to 0.
The mean is the average value of a dataset, hence, it cannot be greater than the maximum value.
The interquartile range is the middle 50% or half of a dataset and not the difference between the highest and lowest middle values in the middle. It is obtained by taking the difference of the upper and lower QUARTILE.
You have a 4.9 percent chance of testing positive. Hope this helped!
The formula for the quadratic formula is x (c in this case) = (-b(+/-)√(b²-4ac))/2a
This is used for an equation in standard quadratic form: ax² + bx + c = 0
1.) Put it in the correct form, if not already in it.
Ex. c² + 6c + 8 = 0
2.) Identify each part of the equation:
a = 1 (the leading coefficient), b = 6 (the coefficient in front of the second variable), c = 8
3.) Plug in each variable answer
c = (-6(+/-)√(6²-4(1)(8))/2(1)
4.) Simplify
c = (-6(+/-)√(36-(4*8))/2
c = (-6(+/-)√(36-32))/2
c = (-6(+/-)√(4))/2
c = (-6(+/-)2)/2
*Here, the equation splits in two. It becomes:
c = (-6+2)/2 AND c = (-6-2)/2
*Simplify again:
c = -4/2 AND c = -8/2
c = -2 AND c = -4
The answers c = -2 and c = -4 would solve the given equation.
Hope this helps! :)