Answer:
The resonant frequency of this circuit is 14.5 kHz.
Explanation:
Given that,
Inductance of a parallel LCR circuit, 
Capacitance of parallel LCR circuit, 
At resonance the inductive reactance becomes equal to the capacitive reactance. The resonant frequency is given by :



or
f = 14.5 kHz
So, the resonant frequency of this circuit is 14.5 kHz. Hence, this is the required solution.
Answer:
speed and time are Vf = 4.43 m/s and t = 0.45 s
Explanation:
This is a problem of free fall, we have the equations of kinematics
Vf² = Vo² + 2g x
As the object is released the initial velocity is zero, let's look at the final velocity with the equation
Vf = √( 2 g X)
Vf = √(2 9.8 1)
Vf = 4.43 m/s
This is the speed with which it reaches the ground
Having the final speed we can find the time
Vf = Vo + g t
t = Vf / g
t = 4.43 / 9.8
t = 0.45 s
This is the time of fall of the body to touch the ground
Answer
given,
mass of the ball = 3 kg
swing in vertical circle with radius = 2 m
work done by the gravity = ?
work done by the tension = ?
Work done by the gravity = - m g Δh
Δ h = 2 + 2 = 4 m
Work done by the gravity =
= -117.6 J
work done by gravity is equal to -117.6 J
Work done by tension will be equal to zero.
Zero because tension is always perpendicular to velocity
work done by tension is equal to 0 J
This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
Explanation:
we are not given the pressure change, check yhe question please