The velocity of the board relative to the ice is zero, since both are at rest.
<h3>What is relative velocity?</h3>
Relative velocity is the velocity of an object in relation to another reference object or point.
When two objects are travelling or moving with the same velocity in the same direction, the relative velocity one relative to the other is zero.
Also, when two objects are at rest, the relative velocity one relative to the other is zero.
Therefore, the velocity of the board relative to the ice is zero, since both are at rest.
Learn more about relative velocity at: brainly.com/question/24337516
#SPJ1
<span> The boiling point of water at sea level is 100 °C. At higher altitudes, the boiling point of water will be.....
a) higher, because the altitude is greater.
b) lower, because temperatures are lower.
c) the same, because water always boils at 100 °C.
d) higher, because there are fewer water molecules in the air.
==> e) lower, because the atmospheric pressure is lower.
--------------------------
Water boils at a lower temperature on top of a mountain because there is less air pressure on the molecules.
-------------------
I hope this is helpful. </span>
Answer:
35 mph
Explanation:
The key of this problem lies in understanding the way that projectile motion works as we are told to neglect the height of the javelin thrower and wind resistance.
When the javelin is thown, its velocity will have two components: a x component and a y component. The only acceleration that will interact with the javelin after it was thown will be the gravety, which has a -y direction. This means that the x component of the velocity will remain constant, and only the y component will be affected, and can be described with the constant acceleration motion properties.
When an object that moves in constant acceleration motion, the time neccesary for it to desaccelerate from a velocity v to 0, will be the same to accelerate the object from 0 to v. And the distance that the object will travel in both desaceleration and acceleration will be exactly the same.
So, when the javelin its thrown, it willgo up until its velocity in the y component reaches 0. Then it will go down, and it will reach reach the ground in the same amount of time it took to go up and, therefore, with the same velocity.