An element with 83 protons has the atomic number 83. If you look at a periodic table you will see Bismuth is the element with the atomic number of 83. It will have a positive charge of +3 because it has only 80 electrons and 83protons. 83-80=+3.
Answer
given,
F₁ = 15 lb
F₂ = 8 lb
θ₁ = 45°
θ₂ = 25°
Assuming the question's diagram is attached below.
now,
computing the horizontal component of the forces.
F_h = F₁ cos θ₁ - F₂ cos θ₂
F_h = 15 cos 45° - 8 cos 25°
F_h = 3.36 lb
now, vertical component of the forces
F_v = F₁ sin θ₁ + F₂ sin θ₂
F_v = 15 sin 45° + 8 sin 25°
F_v = 13.98 lb
resultant force would be equal to


F = 14.38 lb
the magnitude of resultant force is equal to 14.38 lb
direction of forces


θ = 76.48°
The question is incomplete. Here is the complete question.
A floating ice block is pushed through a displacement vector d = (15m)i - (12m)j along a straight embankment by rushing water, which exerts a force vector F = (210N)i - (150N)j on the block. How much work does the force do on the block during displacement?
Answer: W = 4950J
Explanation: <u>Work</u> (W), in physics, is done when a force acts on an object that has a displacement form a place to another:
W = F · d
As the formula shows, Work is a scalar product, i.e, it results in a number, so, Work only has magnitude.
Force and displacement for the ice block are in 2 dimensions, then work will be:
W = (210)i - (150)j · (15)i - (12)j
W = (210*15) + (150*12)
W = 3150 + 1800
W = 4950J
During the displacement, the ice block has a work of 4950J