In Rutherford's gold foil experiment, some of the positive particles would pass through the foil and some would bounce off. This led to a new theory that all of the positive subatomic particles were in the center of the atom instead of evenly spread throughout.
Answer: Rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
Explanation: Terminal velocity is defined as the final velocity attained by an object falling under the gravity. At this moment weight is balanced by the air resistance or drag force and body falls with zero acceleration i.e. with a constant velocity.
Case 1: Terminal velocity of a piece of tissue paper.
The weight of tissue paper is very less and it experiences an air resistance while falling downward under the effect of gravity.
Downward gravitational force, F = mg
Upward air resistance or friction or drag force will be 
So, paper will attain terminal velocity when mg =
Case 2: Rock is very heavy and require larger air resistance to balance the weight of rock relative to the tissue paper case.
Downward force on rock, F = Mg
Drag force =
Rock will attain terminal velocity when Mg =
Mg > mg
so,
>
And rock require larger drag force and to achieve it rock need to move at a very high terminal velocity.
There are two atoms of potassium bonded to one atom of sulfur.
Answer:
Hans Christian Oersted began a new scientific epoch when he discovered that electricity and magnetism are linked. He showed by experiment that an electric current flowing through a wire could move a nearby magnet. The discovery of electromagnetism set the stage for the eventual development of our modern technology-based world.
Explanation: