Answer:
sin 3 θ = 3 sin θ - 4 sin³θ
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given sin 3 θ
= sin ( 2θ + θ )
apply trigonometric formula
<em> sin ( A + B) = sin A cos B + cos A sin B </em>
<em> sin 2 A = 2 sin A cos B</em>
<em> Cos 2 A = 1 - 2 sin² A </em>
<em> cos ² A - sin ² A = 1</em>
<u><em>Step(ii):</em></u>-
sin 3 θ = sin ( 2θ + θ )
= sin 2θ cosθ + cos2θ sin θ
= 2 sin θ cos θ cos θ +( 1 - 2 sin² θ )sin θ
= 2 sin θ (cos² θ ) + sin θ- 2 sin³ θ
= 2 sin θ ( 1- sin²θ) + sin θ- 2 sin³ θ
= 2 sin θ - 2sin³θ + sin θ- 2 sin³ θ
= 3 sin θ - 4 sin³θ
<u><em>Final answer</em></u> :-
sin 3 θ = 3 sin θ - 4 sin³θ
I honestly don’t know this at all and I want to so can someone explain
Answer:
The terms are - 1, 7 and 15.
Step-by-step explanation:
Let the terms be a-d, a and a+d
ATQ, a-d+a+a+d=21, a=7. a+d-(a+(a-d))=9. d=8. The terms are - 1, 7 and 15.
0.7=7/10
0.8=8/10
0.75=3/4 this is between 0.7 and 0.8