The unknown number is 48 using the equation: x ÷ 12 +49=53 subtract 49 from both sides and get x ÷ 12 = 4 multiplying by 12 on both side to get rid of the ÷12 and get the final answer of x=48.
Answer:
Step-by-step explanation:
Check attachment for solution
1. If the product of these integers is to be 1, then all of them must be either 1 or -1.
2. Since the product is positive (+1), it must be that there are an *even* number of negative ones (-1), if any.
3. If the sum were 0 it would mean that the number of +1's must equal the number of -1's. So that means there would have to be exactly 22/2=11 of each.
4. But if there were 11 of each, that means the number of -1's would be *odd* and there's no way the product could be +1 (as stated in 2 above).
Hence, the sum is never 0, if the product of 22 integers is equal +1.
5(t)
It will be $5 times however many weeks
Answer:
{d,b}={4,3}
Step-by-step explanation:
[1] 11d + 17b = 95
[2] d + b = 7
Graphic Representation of the Equations :
17b + 11d = 95 b + d = 7
Solve by Substitution :
// Solve equation [2] for the variable b
[2] b = -d + 7
// Plug this in for variable b in equation [1]
[1] 11d + 17•(-d +7) = 95
[1] -6d = -24
// Solve equation [1] for the variable d
[1] 6d = 24
[1] d = 4
// By now we know this much :
d = 4
b = -d+7
// Use the d value to solve for b
b = -(4)+7 = 3
Solution :
{d,b} = {4,3}