Answer:
option a negative to positive
Explanation:
The flow of electrons is termed electron current. Electrons flow from the negative terminal to the positive. Conventional current or simply current, behaves as if positive charge carriers cause current flow. Conventional current flows from the positive terminal to the negative
brainliest plsss
Answer:
Final velocity of the first person is 3.43m/s and that of the second person is 0.0242m/s
Explanation:
Let the momentum of the first person, the ball second person be Ma, Mb and Mc.
From the principle of the conservation of momentum, sum of the momentum before collision is equal to the sum of the momentum after collision.
Ma1 + Mb1 = Ma2 + Mb2.
The ball and the first person are both moving together with a common velocity 3.45m/s.
Let the velocity of the first person be v1
Therefore
67.5×3.45+ 0.041×3.45= 67.5v1 + 0.041×34
233.02 = 1.39+ 67.5v1
67.5v1 = 233.02 - 1.39 = 231.61
v1 = 231.61 / 67.5
v1 = 3.43m/s
The second person and the ball move together with a common velocity after catching the ball.
For the second person and the ball let their final common velocity be v
Mb2 + Mc2 = Mb3 + Mc3
0.041 × 34 + 57.5 ×0 = (57.5 + 0.041)×v
57.541v = 1.39
v = 1.39 /57.541
v = 0.0242m/s
Force = (mass) x (acceleration)
Mass = (force) / (acceleration)
There was 150N of force in one direction and 100N of 'force' in
the other direction. The net force on the object was (150 - 100) = 50N .
Acceleration = (change in speed) / (time for the change)
= (10 m/s) / (5s) = 2 m/s²
Mass = (net force) / (acceleration) = (50 N) / (2 m/s²) = 25 kilograms
Answer:
12.7 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 56.7 Km/hr
Maximum height (h) =..?
First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:
Initial velocity (m/s) = 56.7 x 1000/3600
Initial velocity (m/s) = 15.75 m/s
Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:
Initial velocity (u) = 15.75 m/s
Final velocity (v) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
v = u – gt (since the ball is going against gravity)
0 = 15.75 – 9.8 × t
Rearrange
9.8 × t = 15.75
Divide both side by 9.8
t = 15.75/9.8
t = 1.61 secs.
Finally, we shall determine the maximum height as follow
h = ½gt²
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 1.61 secs.
Height (h) =..?
h = ½gt²
h = ½ × 9.8 × 1.61²
h = 4.9 x 1.61²
h = 12.7 m
Therefore, the maximum height reached by the ball is 12.7 m