By wave particle duality.
Wavelength , λ = h / mv
where h = Planck's constant = 6.63 * 10⁻³⁴ Js, m = mass in kg, v = velocity in m/s.
m = 1kg, v = 4.5 m/s
λ = h / mv
λ = (6.63 * 10⁻³⁴) /(1*4.5)
λ ≈ 1.473 * 10⁻³⁴ m
Option D.
Answer:
- Virtual
- Upright
- Smaller
Explanation:
I just did it on Edg22 and I got it correct :D
Answer: The angle of resolution =47.05°
Explanation:
The angle of resolution represents the resolve power and precision of optical instruments such as the eye, camera and e en a microscope. It is given by the equation:
Sin A = 1.220(W÷D)
Sin A= 1.220(300÷500)
Sin A = 1.220(0.6)
Sin A = 0.732
A= Sin^-1 0.732
A= 47.05°
The direction of force, when electric current and magnetic field direction given is at 90° to the plane containing current I and Magnetic field B.
<h3>What is magnetic force?</h3>
The force of attraction or repulsion experienced by a magnetic material when it enters the magnetic field.
When a wire with an electric current I is placed in a magnetic field of strength B it experiences a magnetic force F.
According to the Fleming's right hand rule, the direction can be determined by knowing any two parameter's direction.
Thus, The direction of force is at 90° to the plane containing current I and Magnetic field B.
Learn more about magnetic force.
brainly.com/question/10353944
#SPJ4
Answer:
The bulbs should be connected in parallel.
Explanation:
We want to find out a way to hook up 2 light bulbs and a battery so that when one bulb burns out or is disconnected the other bulbs stays lit.
We must connect the two bulbs in parallel so that even when one bulb is burns out, it will have no effect on the other bulb and the 2nd bulb will keep on working. The current flowing in each bulb will depend upon the resistance of each bulb and the voltage will be same across each bulb.
On the other hand, if we use a series circuit then if one bulb burns out then the there is no flow of current in the circuit and therefore, the second bulb will not be operational.
The current flowing through each bulb is given by
I = V/R
The voltage across each bulb is given by
V = IReq
Where I is the current and Req is the equivalent resistance of the two bulbs connected in parallel and is given by
Req = (R₁*R₂)/(R₁+R₂)
The connection diagram is attached where two bulbs are connected in parallel and are power with a battery.