Answer:
7/12 would be ur answer
Step-by-step explanation:
well, if the diameter is 5, thus its radius must be half that, or 2.5, and therefore, the radius of the one four times as much will be (4)(2.5).
Let's simply get their difference, since that'd be how much more is needed from the smaller to larger sphere.
![~\hfill \stackrel{\textit{surface area of a sphere}}{SA=4\pi r^2}\qquad \qquad r=radius~\hfill \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\large difference of their areas}}{\stackrel{\textit{radius of (4)(2.5)}}{4\pi (4)(2.5)^2}~~ - ~~\stackrel{\textit{radius of 2.5}}{4\pi (2.5)^2}}\implies 100\pi -25\pi \implies 75\pi ~~ \approx ~~235.62~ft^2](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bsurface%20area%20of%20a%20sphere%7D%7D%7BSA%3D4%5Cpi%20r%5E2%7D%5Cqquad%20%5Cqquad%20r%3Dradius~%5Chfill%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20difference%20of%20their%20areas%7D%7D%7B%5Cstackrel%7B%5Ctextit%7Bradius%20of%20%284%29%282.5%29%7D%7D%7B4%5Cpi%20%284%29%282.5%29%5E2%7D~~%20-%20~~%5Cstackrel%7B%5Ctextit%7Bradius%20of%202.5%7D%7D%7B4%5Cpi%20%282.5%29%5E2%7D%7D%5Cimplies%20100%5Cpi%20-25%5Cpi%20%5Cimplies%2075%5Cpi%20~~%20%5Capprox%20~~235.62~ft%5E2)
Answer: 
Step-by-step explanation:
Hypothesis testing

For this problem, we need to use the t-student distribution to make inference about the data. We calculate the t-statistics as below:

Using a t-statistics table, or using the function TDIST in Microsoft Excel with
with two-tailed distribution, we obtain
.
Answer:
2.6
Step-by-step explanation:
4 squared - 3 squared =7
Square root 7 equals 2.6 to the nearest tenths