<u>Answer:</u>
<em>The number of moles of HCl actually present is 0.000988</em>
<u>Explanation:</u>
<em>The balanced chemical equation of the given reaction is </em>

Here one mole of HCl reacts with one mole of NaOH to form one mole of NaCl and one mole of water. Here the molarity of HCl is given as 0.026M.
<em>molarity of NaOH is 0.032M
</em>
molarity is the number of moles per unit volume of solution.
we have to calculate the number of moles in 36 mL of HCl.
<em>38 mL=36/1000=0.038L
</em>
<em>the number of moles in 38 mL of HCl is given by
</em>
<em>no of moles =
</em>
Answer:
A. 0.0655 mol/L.
B. PbBr2.
C. Pb2+(aq) + Br- --> PbBr2(s).
Explanation:
Balanced equation of the reaction:
Pb(NO3)2(aq) + 2NaBr(aq) --> PbBr2(s) + 2NaNO3(aq)
A.
Number of moles
PbBr2
Molar mass = 207 + (80*2)
= 367 g/mol.
Moles = mass/molar mass
= 3.006/367
= 0.00819 mol.
Since 2 moles of NaBr reacted to form 1 mole of PbBr2. Therefore, moles of NaBr = 2*0.00819
= 0.01638 moles of NaBr.
Since, the ionic equation is
NaBr(aq) --> Na+(aq) + Br-(aq)
Since 1 moles of NaBr dissociation in solution to give 1 mole of Br-
Therefore, molar concentration of Br-
= 0.0164/0.25 L
= 0.0655 mol/L.
B.
PbBr2
C.
Pb(NO3)2(aq)--> Pb2+(aq) + 2No3^2-(aq)
2NaBr(aq) --> 2Na+(aq) + 2Br-(aq)
Net ionic equation:
Pb2+(aq) + 2Br- --> PbBr2(s)
65.38 u ± 0.002 u there you go
<h3>
Answer:</h3>
40 atm
<h3>
Explanation:</h3>
- According to Boyle's law, the pressure and the volume of a fixed mass of a gas are inversely proportional at constant absolute temperature.
- That is;

- At varying pressure and volume,
P1V1 =P2V2
In this case,
Initial volume, V1 = 2 L
Initial pressure, P1 = 1 atm
New volume, V2 = 0.05 L
We are required to calculate the new pressure,
Rearranging the formula;
P2 = P1V1 ÷ V2
= (1 atm × 2L) ÷ 0.05 L
= 40 atm
Therefore, the pressure required is 40 atm
Make sure to list known values on the side. Based on the wording of the question, we know that pressure is constant and moles is constant. You can rearrange the ideal gas equation and solve for the volume.