The items that are true of early nuclear science are "the first nuclear reactions were done in the 1880s" and "the first nucleus split was uranium-235." <span>The answers are letters A and D. It is impossible that nucleus was lost during the reaction as it will not follow the law of mass conservation.
</span>
Answer:
1.327 g Ag₂CrO₄
Explanation:
The reaction that takes place is:
- 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq)
First we need to <em>identify the limiting reactant</em>:
We have:
- 0.20 M * 50.0 mL = 10 mmol of AgNO₃
- 0.10 M * 40.0 mL = 4 mmol of K₂CrO₄
If 4 mmol of K₂CrO₄ were to react completely, it would require (4*2) 8 mmol of AgNO₃. There's more than 8 mmol of AgNO₃ so AgNO₃ is the excess reactant. <em><u>That makes K₂CrO₄ the limiting reactant</u></em>.
Now we <u>calculate the mass of Ag₂CrO₄ formed</u>, using the <em>limiting reactant</em>:
- 4 mmol K₂CrO₄ *
= 1326.92 mg Ag₂CrO₄
- 1326.92 mg / 1000 = 1.327 g Ag₂CrO₄
If there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
<h3>What if there was an inverse relationship between the temperature and the volume?</h3>
If there was an inverse relationship between the temperature and the volume then with increasing temperature decrease occur in the volume of a substance. If this type of relationship is present in the world, the objects will contract when the temperature is high and expand when the temperature is low which make the solid materials expand at winter and contract at summer season.
So we can conclude that if there was an inverse relationship between the temperature and the volume, our daily lives change because in high temperature things will contract.
Learn more about temperature here: brainly.com/question/25677592
#SPJ1
Answer:
there are 4 hydrogen so
A.the mass of Hydrogen in the reactant side of the equation above is 1×4=4 amu.
B.the mass of Hydrogen on the product side of the equation above =1×4=4 amu.
<u>Note</u><u>:</u><u> </u><u>mass</u><u> </u><u>of</u><u> </u><u>reactant</u><u> </u><u>=</u><u>mass</u><u> </u><u>of</u><u> </u><u>product</u><u>.</u>
Mass would be the amount of matter an object contains.