Answer:
The correct answer is 32.2 grams.
Explanation:
Based on the given information, the enthalpy of formation for aluminum oxide is 1676 kJ/mol. It signifies towards the energy that is required to generate aluminum and oxygen, and both of these exhibit zero enthalpy of formation. Therefore, the ΔHreaction is the required energy to generate 2 moles of aluminum. Thus, the energy needed for the formation of single mole of aluminum is,
ΔHrxn = 1676/2 = 838 kJ/mol
Q or the energy input mentioned in the given case is 1000 kJ. Therefore, the number of moles of Al generated is,
(1000 kJ) / (838 kJ/Al mole) = 1.19 moles of Aluminum
The grams of aluminum produced can be obtained by using the formula,
mass = moles * molecular mass
= 1.19 * 26.98
= 32.2 grams.
Answer:
This is a single replacement reaction because I replaces Br.
Answer:
no it's not solid rather it's an aqueous
Explanation:
B/c Barium hydroxide is used in analytical chemistry for the titration of weak acids, particularly organic acids. Its clear aqueous solution is guaranteed to be free of carbonate, unlike those of sodium hydroxide and potassium hydroxide, as barium carbonate is insoluble in water.