Peter is taller, convert cm to in.
Answer:
190.4g
Explanation:
1.6mol of KBr (119.002g KBr/1 mol) = 190.4g
since you want to find grams, take the molar mass of KBr (119.002) per 1 mol and use it as your conversion factor (119.002g KBr/1 mol) which will then cancel out mols and leave you with grams.
Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
Answer:
are produces are in a month.
Explanation:
Quantity of eggs produced by the chicken in a month = 284 dozens
1 dozen = 12 eggs
Number of eggs in a month:

are produces are in a month.
Answer:
C.
Explanation:
If the students want to know at what percent of CO2 in the air the plant will grow at the fastest, then the percent of CO2 should be a different value for each plant in the table.
There are 2 tables that have different values for the CO2 - the tables in answer choices C and D.
Since the students only want to know how the amount of CO2 affects the plant, every other variable should remain constant.
The only answer choice that has a changing value for the percent of CO2 and a constant value for every other variable is C.