Answer:
The solution is ![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
Step-by-step explanation:
From the question
The function given is 
The indefinite integral is mathematically represented as

Now let 
=> 
=> 
So

![= \frac{1}{2} \frac{tan^{-1} [\frac{u}{5} ]}{5} + C](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cfrac%7Btan%5E%7B-1%7D%20%5B%5Cfrac%7Bu%7D%7B5%7D%20%5D%7D%7B5%7D%20%20%2B%20%20C)
Now substituting for u
![\frac{1}{10} * tan^{-1}[\frac{e^{2x}}{5} ] + C](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B10%7D%20%2A%20tan%5E%7B-1%7D%5B%5Cfrac%7Be%5E%7B2x%7D%7D%7B5%7D%20%5D%20%2B%20%20C)
You can divide the field into two squares of area 2500 yd^2. The side of each of those will be √2500 = 50 yd.
The dimensions of the field are 50 yd by 100 yd.
Answer:
yes
Step-by-step explanation:
Answer:
Option 2
Step-by-step explanation:
¼Y - ½
= ¼Y - 2/4
= ¼(Y - 2)
Answer:



Therefore,
Option (A) is false
Option (B) is false
Option (C) is false
Step-by-step explanation:
Considering the graph
Given the vertices of the segment AB
Finding the length of AB using the formula







units
Given the vertices of the segment JK
From the graph, it is clear that the length of JK = 5 units
so
units
Given the vertices of the segment GH
Finding the length of GH using the formula





![\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Cmathrm%7BApply%5C%3Aradical%5C%3Arule%5C%3A%7D%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)
units
Thus, from the calculations, it is clear that:
Thus,



Therefore,
Option (A) is false
Option (B) is false
Option (C) is false