The vertex of the graph of f(x)= |x-3|+6 is located at (3, 6)
<h3>How to determine the vertex?</h3>
The equation of the function is given as:
f(x) = |x - 3| + 6
The above function is an absolute value function.
An absolute value function is represented as:
f(x) = a|x - h| + k
Where:
Vertex = (h, k)
By comparison, we have:
Vertex = (3, 6)
Hence, the vertex of the graph of f(x)= |x-3|+6 is located at (3, 6)
Read more about vertex at:
brainly.com/question/16799565
#SPJ1
Answer: -767.25<-556.75
Explanation: Ryan has less money than tim therefore making him owe the bank more
Answer:
∠S = 66°
Step-by-step explanation:
A parallelogram's 4 angles always add up to 360°, and opposite angles are the same. (∠S = ∠U; ∠T = ∠V)
So, ∠S + ∠T = 180°.
180° = (2x + 4x + 12 + 6)°
180° = (6x + 18)°
162° = (6x)°
27° = x°
(2x + 12)° = ∠S
(2(27) + 12)° = ∠S
(54 + 12)° = ∠S
66° = ∠S
Step-by-step explanation:
To find the mean absolute deviation of the data, start by finding the mean of the data set. Find the sum of the data values, and divide the sum by the number of data values. Find the absolute value of the difference between each data value and the mean: |data value – mean|.