Answer:
Speed = 20 mi/h
Explanation:
There are two points A and B
Distance between both the points are define with function -20t + 45 miles
where t represent the number of hours of travelling.
Now firstly we find the initial position. At starting time is 0, so we put t=0 in given function of t.
At t=0;
d₀ = -20(0) + 45 = 0 + 45 = 45 miles
Now we find the distance travell after starting first hour.
Than we put t = 1 in the given function
At t = 1;
d₁ = -20(1) + 45 = -20 + 45 = 25 miles
Difference between d₁ & d₀ is
45 - 25 = 20 miles
We see that in one hour, total distace is covered 20 miles
Now we use time, speed, distance relation
Speed = distance/time
Speed= 
Speed = 20 miles/hour
That's the final answer.
I hope it will help you.
Dilation of a point P(x,y) with scale factor s centred at (p,q) is given by
P'=(p+s*(x-p),q+s*(x-q))
Substituting
s=2, p=2,q=2
P'=(2+2*(x-2),2+2*(y-2))
P P'
(2,4) (2+2(2-2), 2+2*(4-2)) = (2, 6)
(0,6) (2+2(0-2), 2+2*(6-2)) = (-2, 10)
(-3,3) (2+2(-3-2), 2+2*(3-2)) = (-8, 4)
1. 5x - 7 = 48
5x = 48 + 7 = 55
x = 55/5 = 11
2. 7n - 2 = 54
7n = 54 + 2 = 56
n = 56 / 7 = 8
3. -4y + 7 = -21
-4y = -21 - 7 = -28
y = -28 / -4 = 7
4. x/2 + 5 = 12
x/2 = 12 - 5 = 7
x = 7 * 2 = 14
5. x/3 - 7 = 13
x/3 = 13 + 7 = 20
x = 20 * 3 = 60
6. -7 - 2 = 33 <- did you type this wrong?
-7x - 2 = 33
-7x = 33 + 2
-7x = 35
x = 5
7. -3x - 8 = -41
-3x = -41 + 8 = -33
x = -33 / -3 = 11
8. 3n - 7 = 35
3n = 35 + 7 = 42
n = 42 / 3 = 14
9. 7y + 9 = -47
7y = -47 - 9 = -56
y = -56 / 7 = -8
10. -8x + 4 = 68
-8x = 68 - 4 = 64
x = 64 / -8 = -8
11. 4n - 7 = -43
4n = -43 + 7 = -36
n = -36 / 4 = -9
12. 5x - 7 = 108
5x = 108 + 7 = 115
x = 115 / 5 = 23
13. 8 - 5w = -37
-5w = -37 - 8 = -45
w = -45 / -5 = 9
14. 42 = 18 + 4n
4n = 42 - 18 = 24
n = 24 / 4 = 6
15. 70 - 6x = 40
-6x = 40 - 70 = -30
x = -30 / -6 = 5
Answer:
<h2>
<em>h</em><em>(</em><em>x</em><em>)</em><em>=</em><em>9</em><em>x</em><em>-</em><em>1</em><em>3</em></h2>
<em>Sol</em><em>ution</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>