Answer:
O(N!), O(2N), O(N2), O(N), O(logN)
Explanation:
N! grows faster than any exponential functions, leave alone polynomials and logarithm. so O( N! ) would be slowest.
2^N would be bigger than N². Any exponential functions are slower than polynomial. So O( 2^N ) is next slowest.
Rest of them should be easier.
N² is slower than N and N is slower than logN as you can check in a graphing calculator.
NOTE: It is just nitpick but big-Oh is not necessary about speed / running time ( many programmers treat it like that anyway ) but rather how the time taken for an algorithm increase as the size of the input increases. Subtle difference.
B) For Military Purposes but around the 1970s they became widely available to consumers.
c.<span>barriers to communication
because the other employees are the ones causing the trouble</span>
Answer:
Xrays, Ultrasounds, managing patient records, communicating with colleagues, etc.