Answer:
La Tasha has 27 rabbit stickers. She splits the stickers
evenly among 3 pieces of paper. How many stickers
did La Tasha put on each piece of paper?
Step-by-step explanation:
Answer:
20 i think srry if wrong
Step-by-step explanation:
I'll do Problem 8 to get you started
a = 4 and c = 7 are the two given sides
Use these values in the pythagorean theorem to find side b

With respect to reference angle A, we have:
- opposite side = a = 4
- adjacent side = b =

- hypotenuse = c = 7
Now let's compute the 6 trig ratios for the angle A.
We'll start with the sine ratio which is opposite over hypotenuse.

Then cosine which is adjacent over hypotenuse

Tangent is the ratio of opposite over adjacent

Rationalizing the denominator may be optional, so I would ask your teacher for clarification.
So far we've taken care of 3 trig functions. The remaining 3 are reciprocals of the ones mentioned so far.
- cosecant, abbreviated as csc, is the reciprocal of sine
- secant, abbreviated as sec, is the reciprocal of cosine
- cotangent, abbreviated as cot, is the reciprocal of tangent
So we'll flip the fraction of each like so:

------------------------------------------------------
Summary:
The missing side is 
The 6 trig functions have these results

Rationalizing the denominator may be optional, but I would ask your teacher to be sure.
I would say about 189 people. I found the percentage of 8 out of 11, which I rounded to the nearest tenth and got 73%. Since that is how much do carry brief cases, I took 100-73 and got 23% for those who don’t carry briefcases. Then I found 23% of 700, which is 189. So, 189 out of 700 people do not carry briefcases.