Answer: The expression for equilibrium constant is ![\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Explanation: Equilibrium constant is the expression which relates the concentration of products and reactants preset at equilibrium at constant temperature. It is represented as 
For a general reaction:

The equilibrium constant is written as:
![k_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Chemical reaction for the formation of ammonia is:


Expression for
is:
![k_c=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
![1.6\times 10^2=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E2%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Answer:
New pressure P2 = 4.95 atm
Explanation:
Given:
Old volume V1 = 1.50 L
New volume V2 = 0.50 L
Old pressure P1 = 1.65 atm
Find:
New pressure P2
Computation:
P1V1 = P2V2
So,
(1.50)(1.65) = (0.50)(P2)
New pressure P2 = 4.95 atm
Answer:
You are the Cobalt
Explanation:
The least massive metalloid in the fourth period is Germanium, and it have 32 protons. If you have 5 less protons: 32 - 5 = 27 protons. The element with 27 protons is Cobalt
Hi!
The generic equation showing how a weak base ionizes water is the following:
B(aq) + H₂O(l) ⇄ BH⁺(aq) + OH⁻(aq)
A base is described as weak when its dissociation is difficult and isn't complete. Weak Bases are chemical compounds that accept protons from water, to form the conjugate acid and the OH⁻ ion. The pH of the solution of a weak base is higher than 7. Some weak bases include ammonia (NH₃), Aluminum Hydroxide (Al(OH)₃) and Sodium Acetate (CH₃COONa).
Have a nice day!