Answer:
CaF2 will not precipitate
Explanation:
Given
Volume of Ca(NO3)2
ml
Molar concentration of Ca(NO3)2 
Volume of NaF
ml
Molar concentration of NaF 
Ksp for CaF2 
CaF2 will precipitate if Q for the reaction is greater than ksp of CAF2
Moles of calcium ion

![[Ca2+] = \frac{0.01}{10 + 10} \\= \frac{0.01}{20} \\= 5 * 10^{-4}](https://tex.z-dn.net/?f=%5BCa2%2B%5D%20%3D%20%5Cfrac%7B0.01%7D%7B10%20%2B%2010%7D%20%5C%5C%3D%20%5Cfrac%7B0.01%7D%7B20%7D%20%5C%5C%3D%205%20%2A%2010%5E%7B-4%7D)
Moles of F- ion

![[F-] = \frac{0.001}{10 + 10} \\= \frac{0.001}{20} \\= 5 * 10^{-5}](https://tex.z-dn.net/?f=%5BF-%5D%20%3D%20%5Cfrac%7B0.001%7D%7B10%20%2B%2010%7D%20%5C%5C%3D%20%5Cfrac%7B0.001%7D%7B20%7D%20%5C%5C%3D%205%20%2A%2010%5E%7B-5%7D)
![Q = [Ca2+] [F-]^2\\= (5 * 10^{-4}) * (0.5* 10^-4)\\= 1.25 * 10^{-12}](https://tex.z-dn.net/?f=Q%20%3D%20%5BCa2%2B%5D%20%5BF-%5D%5E2%5C%5C%3D%20%285%20%2A%2010%5E%7B-4%7D%29%20%2A%20%280.5%2A%2010%5E-4%29%5C%5C%3D%201.25%20%2A%2010%5E%7B-12%7D)
Q is lesser than Ksp value of CaF2. Hence it will not precipitate
Answer:
i) B
ii) D
Explanation:
<em>Bond length is determined by the size of the atoms involved and the bond order </em>
A) C-I
B) H-I
answer : H-I has the shortest bond length because H has an electronegativity value of 2.2 while C has an electronegativity value of 2.5 hence the bond between H-I is greater than C - I due the electronegativity difference between H-I is greater as well.
C) H-Cl
D) H-I
answer : H-Cl has the shortest bond length due the electronegativity difference between H-CI is greater as well.
Proton and neutron, which are both approximately 1 amu
Answer:
Explanation:
The strong bases have following properties:
1. In solution, strong bases ionize fully.
2. On dissolving the strong bases in water they produce all hydroxide ion which they have.
3. For strong bases the value of equilibrium constant (Kb ) is large.
4. In general the strong base ionizes completely means concentration of ions are greater means conductivity also greater.
5. For strong bases the value of equilibrium constant (Kb) is large, thus the value of dG0 is very large negative number.