4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:

I believe it is acceleration!
Answer:
Hello your question is incomplete below is the complete question
Calculate Earths velocity of approach toward the sun when earth in its orbit is at an extremum of the latus rectum through the sun, Take the eccentricity of Earth's orbit to be 1/60 and its Semimajor axis to be 93,000,000
answer : V = 1.624* 10^-5 m/s
Explanation:
First we have to calculate the value of a
a = 93 * 10^6 mile/m * 1609.344 m
= 149.668 * 10^8 m
next we will express the distance between the earth and the sun
--------- (1)
a = 149.668 * 10^8
E (eccentricity ) = ( 1/60 )^2
= 90°
input the given values into equation 1 above
r = 149.626 * 10^9 m
next calculate the Earths velocity of approach towards the sun using this equation
------ (2)
Note :
Rc = 149.626 * 10^9 m
equation 2 becomes
(
therefore : V = 1.624* 10^-5 m/s
The coil is rotated rapidly in the magnetic field.
The magnetic flux linked with the coil changes and thus, an emf is induced which leads to the flow of current .
when the coil rotates and is in a position along the direction of the magnetic field, emf is maximum while when it is perpendicular to the magnetic field,emf is 0.
Thus an ac generator converts mechanical to electrical energy.It works on the principle of electromagnetic induction. The polarity at the supply terminals changes like.. 100 times a second if the frequency is 50 Hz(50 times+ and 50 times - )
hope it helps!
Answer:
Option B. 8.1
Explanation:
From the question given above, the following data were obtained:
Angle θ = 71°
Hypothenus = 25
Adjacent = x
Thus, we can obtain the x component of the vector by using the cosine ratio as illustrated below:
Cos θ = Adjacent /Hypothenus
Cos 71 = x/25
Cross multiply
x = 25 × Cos 71
x = 25 × 0.3256
x = 8.1
Therefore, the x component of the vector is 8.1