Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
Answer:
Explanation:
Initial height from the ground = .41 m
Final height = 1m
Height by which Kelli was raised ( h )= .59 m
When she passes through the lowest point , she loses P E
= mgh
= 440 x .59
= 259.6 J
kinetic energy possessed by her
= 1/2 mv²
= .5 x (440/9.8) x 2²
= 89.8 J
Difference of energy is lost due to work by air friction
work done by friction = 89.8 - 259.6
= - 169.8 J
Answer:
m = 95000 kg
Explanation:
Given that,
Net force acting on the house, F = 2850 N
Initial speed, u = 0
Final speed, v = 15 cm/s = 0.15 m/s
We need to find the mass of the house. Let the mass be m. We know that the net force is given by :
F = ma
Where
a is the acceleration of the house.
So,

So, the mass of the house is equal to 95000 kg.
Both of them are magnets coiled by wires.
1. The wire coiled in the first diagram, the wire is having current, Making the magnetic feild of the magnet more........
2. The wire coiling the magnet is here not having electric current making the magnetic feild smaller