Answer:
C is the best answer because we all know that clock is part of our daily lives but we don't know the about its background
THE ANSWER IS 16 ohms or however its spelled
Answer: be alert for pedestrians near the bus.
Explanation: Due to road accidents many Governments around the world has adopted and put in place certain rules and regulations with regards to road safety, this is so to prevent the or reduce the chances of accidents happening.
Road safety rules are rules and guidelines put in place by Government in order to prevent road accidents and maintain a free flow of traffic. An example of such rules is 'be alert for pedestrians near the bus ' when approaching a local bus that is stopped.
The equivalent resistance of several devices connected in parallel is given by

where

are the resistances of the various devices. We can see that every time we add a new device in parallel, the term

increases, therefore the equivalent resistance of the circuit

decreases.
But Ohm's law:

tells us that if the equivalent resistance decreases, the total current in the circuit increases. The power dissipated through the circuit (and so, the heat produced) depends on the square of the current:

therefore if there are too many devices connected in parallel, this can be a problem because there could be too much power dissipated (and too much heat) through the circuit.
The rule that is used to get the strength of magnetic field at the center of solenoid (B) is:
B = <span>µ x n x I where:
</span>µ is the permeability of the medium where the solenoid is based. In this problem, the medium is air which means that µ = <span>µ </span><span>o = 4 pi x 10^-7 Tm/A
</span>I is the current passing (I = 4 amperes)
n is the number of turns per unit length (5000 turns)
Substituting in the mentioned equation, we find that:
B = 4 x 3.14 x 10^-7 x 5000 x 4 = 25.132 mT