To solve this problem it is necessary to apply the concepts related to the geometry of a cylindrical tank and its respective definition.
The volume of a tank is given by

Where
d = Diameter
h = Height
Considering that there are two stages, let's define the initial and final volume as,


We know as well by definition that

Then we have for the statement that


Replacing the previous data


Solving to get h,

Therefore the change is



Therefore te change in the height of the water in the tank is 0.37mm
Given:
A cylindrical container closed of both end has a radius of 7cm and height of 6cm.
Explanation:
A.) Find the total surface area of the container.
- A = 2πrh + 2πr²
- A = 2(3.14)(7)(6) + 2(3.14)(7 × 7)
- A = 263.76 + 307.72
- A = 571.48
B.) Find the volume of the container.
- V = πr²h
- V = (3.14)(7×7)(6)
- V = 923.16
Not sure huhuness.
#CarryOnLearning
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
The total distance you haved walked should be 2.6 miles