Answer:

ω = 0.0347 rad/s²
a ≅ 1.07 m/s²
Explanation:
Given that:
mass of the model airplane = 0.741 kg
radius of the wire = 30.9 m
Force = 0.795 N
The torque produced by the net thrust about the center of the circle can be calculated as:

where;
F represent the magnitude of the thrust
r represent the radius of the wire
Since we have our parameters in set, the next thing to do is to replace it into the above formula;
So;


(b)
Find the angular acceleration of the airplane when it is in level flight rad/s²

where;
I = moment of inertia
ω = angular acceleration
The moment of inertia (I) can also be illustrated as:

I = ( 0.741) × (30.9)²
I = 0.741 × 954.81
I = 707.51 Kg.m²

Making angular acceleration the subject of the formula; we have;

ω = 
ω = 0.0347 rad/s²
(c)
Find the linear acceleration of the airplane tangent to its flight path.m/s²
the linear acceleration (a) can be given as:
a = ωr
a = 0.0347 × 30.9
a = 1.07223 m/s²
a ≅ 1.07 m/s²
water current is the flow of water
Potential is the first blank and kinetic is the second blank.
This should be correct
Answer:
IS TWICE THAT OF THE GRAVITATIONAL FORCE BETWEEN THE SMALLER ASTEROID AND THE SUN
Explanation:
The equation for gravitational force is:

where G is the gravitational constant.
Given that distance remains constant, and the mass of the bigger asteroid is bigger, we can get the following relation:

Here we can see that multiplying the mass by 2 gives us 2 times the gravitational force for the bigger asteroid.
Thus, the gravitational force for the bigger asteroid and the sun is two times that of the smaller asteroid and the sun.
Answer:
i think the answer would be:Jonas’ brother gets out of the cab of the truck and sits in the back of the truck with the furniture. With less mass, they should be able to push the truck to the gas station.
Explanation: