Il existe troi types de rayons produits lors de la désintégration des éléments radioactifs:
-- "particules alpha" . . . noyaux d'hélium, composés chacun de 2 protons et 2 neutrons
-- "rayons bêta" ou "particules bêta" . . . flux d'électrons
-- "rayons gamma" . . . rayonnement électromagnétique avec les longueurs d'onde les plus courtes connues et l'énergie la plus élevée
Given:
F_gravity = 10 N
F_tension = 25 N
Let's find the net centripetal force exterted on the ball.
Apply the formula:

From the given figure, the force acting towards the circular path will be positive, while the force which points directly away from the center is negative.
Hence, the tensional force is positive while the gravitational force is negative.
Thus, we have:

Therefore, the net centripetal force exterted on the ball is 15 N.
ANSWER:
15 N
Answer:
The pressure exerted by the brick on the table is 18,933.3 N/m².
Explanation:
Given;
height of the brick, h = 0.1 m
density of the brick, ρ = 19,300 kg/m³
acceleration due to gravity, g = 9.81 m/s²
The pressure exerted by the brick on the table is calculated as;
P = ρgh
P = (19,300)(9.81)(0.1)
P = 18,933.3 N/m²
Therefore, the pressure exerted by the brick on the table is 18,933.3 N/m².
The unit of height is:
Feet
Inches
Centimeters
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.