Answer:
option 1 will be the answer.
Explanation:
hope it helps.
It is the mitochondria of a cell that stores energy for a quick release. <span>Mitochondria break down glucose to release the energy for cells to use. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>
Answer:
d. The ideal diode acts as a short circuit for forward currents and as an open circuit with reverse voltage applied.
Explanation:
Ideal diode acts like an ideal conductor. In case of forward voltage it acts like an ideal conductor. However when it is reverse biased then it behaves like an ideal insulator. You can understand it bu considering a switch. When the voltage is forward then ideal diode acts like a closed switch. When the voltage is reverse biased then ideal diode behaves like an open switch.
That is why we can say that the ideal diode acts as a short circuit (higher conduction) for forward currents and as an open circuit ( zero conduction) with reverse voltage applied.
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!