A (n + y) = 10y + 32
(an + ay) = 10y + 32
an + ay = 32 + 10y
Solve for "a"
-32 + an + ay + (-10y) = 32 + 10y + (-32) + (-10y)
-32 + an + ay + -10y = 32 + -32 + 10y + -10y
<span>- 32 + an + ay + (-10y) = 0 + 10y + (-10y)
- 32 + an + ay + (-10y) = 10y + (-10y)
</span><span>10y + -10y = 0
-32 + an + ay + (-10y) = 0
Thi could not be determined. (no solution)</span>
Combine like terms. So that means combine the X's and combine the regular numbers.
- add 2x to 8x
- combine +15 -5
- then add 11 to that
- once you're done, find X by dividing 10x by whatever you have after the = sign
Answer:
A.true
Step-by-step explanation:
The domain of a quadratic function in standard form is always all real numbers, meaning you can substitute any real number for x. The range of a function is the set of all real values of y that you can get by plugging real numbers into x.
well, let's first notice, all our dimensions or measures must be using the same unit, so could convert the height to liters or the liters to centimeters, well hmm let's convert the volume of 1000 litres to cubic centimeters, keeping in mind that there are 1000 cm³ in 1 litre.
well, 1000 * 1000 = 1,000,000 cm³, so that's 1000 litres.
![\textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ V=1000000~cm^3\\ h=224~cm \end{cases}\implies \stackrel{cm^3}{1000000}=\pi r^2(\stackrel{cm}{224}) \\\\\\ \cfrac{1000000}{224\pi }=r^2\implies \sqrt{\cfrac{1000000}{224\pi }}=r\implies \cfrac{1000}{\sqrt{224\pi }}=r\implies \stackrel{cm}{37.7}\approx r](https://tex.z-dn.net/?f=%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%5C%5C%5C%5C%20V%3D%5Cpi%20r%5E2%20h~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20V%3D1000000~cm%5E3%5C%5C%20h%3D224~cm%20%5Cend%7Bcases%7D%5Cimplies%20%5Cstackrel%7Bcm%5E3%7D%7B1000000%7D%3D%5Cpi%20r%5E2%28%5Cstackrel%7Bcm%7D%7B224%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%3Dr%5E2%5Cimplies%20%5Csqrt%7B%5Ccfrac%7B1000000%7D%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Ccfrac%7B1000%7D%7B%5Csqrt%7B224%5Cpi%20%7D%7D%3Dr%5Cimplies%20%5Cstackrel%7Bcm%7D%7B37.7%7D%5Capprox%20r)
now, we could have included the "cm³ and cm" units for the volume as well as the height in the calculations, and their simplication will have been just the "cm" anyway.
Answer:
6px
Step-by-step explanation:
hope this help