Effect of increasing surface area on the rate of a reaction. ... Increasing the surface area of a solid reactant exposes more of its particles to attack. This results in an increased chance of collisions between reactant particles, so there are more collisions in any given time and the rate of reaction increases.
Answer:
<em>At equilibrium, the rate of the forward, and the reverse reactions are equal.</em>
Explanation:
In an equilibrium chemical reaction, the rate of forward reaction, is equal to the rate of reverse reaction. Note that the reactions does not cease at equilibrium, but rather, the reactants are converted to product, at the same rate at which the product is also being converted into the reactants in the reaction. When chemical equilibrium is reached, a careful calculation of the value of equilibrium constant is approximately equal to 1.
NB: If the value of equilibrium constant is far far greater than 1, then the reaction will favors more of the forward reaction, and if far far less than 1, the reaction will favor more of the reverse reaction.
Answer:
Kc = [CO2], that is to say it is equal to the concentration of CO2
Explanation:
It is a heterogeneous equilibrium since the substances that participate in the reaction are in different phases
In the heterogeneous limestone decomposition reaction:
CaCO3(s) --> CaO(s) + CO2(g)
The equilibrium constants are:
Kc = [CO2(g)]; Kp = PCO2(g); Kc = Kp (R T)^
−(1−0) = Kp (R T)^
−1
The equilibrium situation is not affected by the amount of solid or liquid, as long as these substances are present.
The equilibrium constant is independent of the amounts of solids and liquids in equilibrium.
Air moves when the molecules are free meaning they aren't close up to each other or trying to fill up space, they are moving freely.
Answer:
It's a type of chemical bond that emerges because of electrostatic force between electrons and positive metal charges.
Explanation:
I don't know if this is what you are looking for but i don't mind if you copy it.