That's the answer on that picture
Answer:
a) 
b) entropy of the sistem equal to a), entropy of the universe grater than a).
Explanation:
a) The change of entropy for a reversible process:


The energy balance:
![\delta U=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=%5Cdelta%20U%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)
If the process is isothermical the U doesn't change:
![0=[tex]\delta Q- \delta W](https://tex.z-dn.net/?f=0%3D%5Btex%5D%5Cdelta%20Q-%20%5Cdelta%20W)


The work:

If it is an ideal gas:


Solving:

Replacing:


Given that it's a compression: V2<V1 and ln(V2/V1)<0. So:

b) The entropy change of the sistem will be equal to the calculated in a), but the change of entropy of the universe will be 0 in a) (reversible process) and in b) has to be positive given that it is an irreversible process.
Answer:
- 130.64°C.
Explanation:
- We can use the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁</em>
<em></em>
V₁ = 634.0 L, T₁ = 21.0°C + 273 = 294.0 K.
V₂ = 307.0 L, T₂ = ??? K.
<em>∴ T₂ = V₂T₁/V₁ </em>= (307.0 L)(294.0 K)/(634.0 L) = <em>142.36 K.</em>
<em>∴ T₂(°C) = 142.36 K - 273 = - 130.64°C.</em>
b
Explanation:
February 7, 1863, was the day John Newlands published a paper outlining what would be known as “The Law of Octaves”. Newlands discovered if he ordered the known elements by increasing atomic weight, the chemical properties of the elements would be similar for every eighth group
All objects DO emit and absorb electromagnetic radiation. therefore, true.