Answer:
0.095 moles of Calcium is there in 5.74 x 1022 atoms of calcium.
Explanation:
- As we know, 6.023*10^23 atoms of an element is equal to its atomic weight.
And, 6.023*10^23 atoms of an element is also equal to 1 mole of the element.
We have,
- 6.023*10^23 atoms of element calcium equals to 1 mole of Calcium
- 5.74*10^22 atoms of element calcium equals to
(1/(6.023*10^.23)) * 5.74*10^22 moles of calcium
Therefore,
- 5.74 x 1022 atoms of calcium= 0.095 moles of calcium.
Answer: (a) Neon, Nitrogen; (b) Neon, Nitrogen; (c) Neon is lower than Nitrogen; (d) It doesn't affect;
Explanation: The kinetic-molecular theory studies the behavior of particles under pre-determinated situation. In cases of gases, the particles moving around colliding with each other and the walls of the container, without loss of energy. In the case in question, all the parameters are the same (same temperature, volume and pressure), except for the gases, which has different molar masses. In this sense, Neon has lower average speed due to its molar mass being higher, which means, its particles moves slower for being heavier. Related to pressure, as velocity is lower, it collides less with the walls of the tank, and so pressure is lower. For density, it doesn't affect the behavior of the system nor the kinetic energy.
Answer:
8.3ml
Explanation:
to get volume u have to divide 25g over the density, i rounded to the nearest tenth, if you don't want to then write out the full number with all the decimals
If you increase the volume the pressure will decrease. so the best answer is C
Answer:
Methods for determining or delivering precise volumes include volumetric pipets and pycnometers; less precise methods include burets, graduated cylinders, and graduated pipets. In this experiment, you will measure masses and volumes to determine density. Four different metal cylinders are investigated.
Explanation: