The given question is incomplete. The complete question is:
A chemist prepares a solution of barium chloride by measuring out 110 g of barium chloride into a 440 ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mole per liter of the chemist's barium chloride solution. Round your answer to 3 significant digits.
Answer: Concentration of the chemist's barium chloride solution is 1.20 mol/L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
moles of
(solute) = 
Now put all the given values in the formula of molality, we get

Therefore, the molarity of solution is 1.20 mol/L
Answer:
Bromine mollecules are held together by van der waals forces while a water molecule constitutes both van der waals forces and hydrogen bomnding
Explanation:
This makes the water molecule recquire more heat energy to break the bond thus a higher boiling point while bromine structure requires just litttle heat energy
1) Write the balaced chemical equation:
H2 + 2O2 → 2H2O
2) Infere the molar ratios:
1 mol H2 : 2 mol of water
3) Make the calculus as the direct proportion relation:
[2 mol H2O] / [1 mol H2] * 7 mol H2 = 14 mol H2
As you see you produce the double number of moles of H2O than number of moles of H2 used.
Answer: 14 moles
Answer:
As an example I can say sodium (Na) and chlorine (Cl).
Explanation:
An ionic bond occurs when a metal element reacts with a nonmetal element. Therefore in the answer given above the Na is metal and Cl is nonmetal and they form a molecule through ionic bonding.
The correct should be A. thousands of galaxies