We know, that the <span>area of the surface generated by revolving the curve y about the x-axis is given by:

In this case a = 0, b = 15,

and:

So there will be:


![\left(\star\right)=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\dfrac{2\pi}{15}\cdot\dfrac{25}{6}\cdot\left[\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}\right]_0^{15}=\\\\\\= \dfrac{5\pi}{9}\left[\left(1+\dfrac{15^4}{25}\right)^\frac{3}{2}-\left(1+\dfrac{0^4}{25}\right)^\frac{3}{2}\right]=\dfrac{5\pi}{9}\left[2026^\frac{3}{2}-1^\frac{3}{2}\right]=\\\\\\= \boxed{\dfrac{5\Big(2026^\frac{3}{2}-1\Big)}{9}\pi}](https://tex.z-dn.net/?f=%5Cleft%28%5Cstar%5Cright%29%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cint%5Climits_0%5E%7B15%7Dx%5E3%5Ccdot%5Csqrt%7B1%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%7D%5C%2C%5C%2C%20dx%3D%5Cdfrac%7B2%5Cpi%7D%7B15%7D%5Ccdot%5Cdfrac%7B25%7D%7B6%7D%5Ccdot%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7Bx%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D_0%5E%7B15%7D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B%5Cleft%281%2B%5Cdfrac%7B15%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cleft%281%2B%5Cdfrac%7B0%5E4%7D%7B25%7D%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B5%5Cpi%7D%7B9%7D%5Cleft%5B2026%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Cboxed%7B%5Cdfrac%7B5%5CBig%282026%5E%5Cfrac%7B3%7D%7B2%7D-1%5CBig%29%7D%7B9%7D%5Cpi%7D)
Answer C.
</span>
Answer:
T12=a-99=106
Step-by-step explanation:
that's the answer
Answer:
Thx for the points
Step-by-step explanation:
Answer:
The area of a label is 
Step-by-step explanation:
we know that
The lateral area of a cylinder (label of the can) is equal to

we have that
A can is 4 inches wide
so
The diameter of the can is 4 inches
----> the radius is half the diameter
----> height of the label
substitute in the formula

Solution,
We have,
Width of rectangle, b = (2.5u+9.8) cm
Length of rectangle, l = (1.5u+3.9) cm
We need to find the expression for the perimeter of the rectangle. The formula for the perimeter of a rectangle is given by:
Perimeter = 2(l+b)
P = 2[(2.5u+9.8)+(1.5u+3.9)]
Collecting like terms
P = 2[(2.5u+1.5u)+(9.8+3.9)]
P=2(4u+13.7)
⇒ P = 8u+27.4
So, the expression for the perimeter of the rectangle is (8u+27.4) cm.