Answer:
2.1 x 10^-2
Explanation:
Divide 8.4 x 10^-3 x 8.4 x 10^-3 by 5.82 x 10^-2 and you end up with 2.1 x 10^-2
<span>Based on the crystal field strength, Cl ligand would give the longest d-d transition when complexed with Ti(III). as this is the weak field ligand and would cause minimum splitting of d orbitals.</span>
By using the formula, mass = density x volume, we
calculate mass in grams
20.0 mL CH₃COOH x (1.05 g / mL) = 21.0
g CH₃COOH
To find the moles, molar mass of CH₃COOH = 60.05g/mol<span>
21.0 g </span>CH₃COOH x (1 mole CH₃COOH / 60.05 g CH₃COOH)
= 0.350 moles CH₃COOH
To find molarity,<span>
[</span>CH₃COOH] = moles CH₃COOH / L of solution = 0.350 /
1.40 = 0.250 M CH₃COOH<span>
When </span>CH₃COOH is dissolved in water, it produces
small and equal amounts of H₃O⁺+ and C₂H₃O₂⁻.
<span>
Molarity , </span>CH₃COOH<span> + H</span>₂O <==> H₃O⁺ + C₂H₃O₂⁻
<span>
<span>Initial 0.250 0 0 </span>
Change -x x x
Equilibrium 0.250-x x x
K</span>ₐ = [H₃O⁺][C₂H₃O₂⁻] / [HC₂H₃O₂] = (x)(x) /
(0.250-x) = 1.8 x 10⁻⁵
<span>Since K</span>ₐ is relatively small, we can neglect the -x
term after 0.250 to simplify
<span>x</span>² / 0.250 = 1.8 x 10⁻⁵
x² = 4.5 x 10⁻⁶
<span>
x = 2.1 x 10</span>⁻³<span> = [H</span>₃O⁺]
pH = -log [H₃O⁺] = -log (2.1 x 10⁻³) = 2.68