Answer:
To allow all the elements or compounds to separate complete.
Explanation:
In chromatography, the compounds need some space and time to separate, one from each other, if you just use the half of the paper strip maybe you will not notice the different spots of compounds. Remember all the substances have different affinity for the solvents, that means, some react very quickly but others need more time as the colors that conform the black color in an ink.
The amount or disorder in a chemical system or system is measured by it's Entropy. Entropy is the simply the measure of the amount of disorder or lack of structure present within a system.
Answer:
The alkyl halide is secondary
The nucleophile is a poor nucleophile
The solvent is a protic solvent
The product is racemic
Explanation:
The reaction is shown in the image attached.
Alkyl halides undergo nucleophilic substitution by two mechanisms; SN1 and SN2. The particular mechanism that applies depends on;
I) structure of the alkyl halide
ii) nature of the nucleophile
iii) nature of the solvent
Looking at the reaction under review, we can see from the structure that the alkyl halide is a secondary alkyl halide. A secondary alkyl halide may undergo substitution via SN1 or SN2 mechanism depending on the conditions of the reaction.
If the nucleophile is poor, and the solvent is protic, SN1 mechanism is favoured over SN2 mechanism. Since CH3CH2OH is a poor nucleophile and ethanol is a protic solvent, we expect the reaction to proceed via SN1 mechanism leading to the formation of a racemic product.
The organic product is also shown in the second image attached.
The properties of the electrons of an atom are determined in large part by the number of protons presented in the nucleus of the atom
Explanation:
To form bonds with noble gases, a lot of energy is required to form those bonds. Halogens, on the other hand, are extremely reactive. ... The halogens tend to be very reactive, while the noble gases are in no way reactive and don't bond easily, if at all.